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Abstract

We show how to use a sampling method to find sparsely
clad people in static images. People are modeled as an as-
sembly of nine cylindrical segments. Segments are found us-
ing an EM algorithm, and then assembled into hypotheses
incrementally, using a learned likelihood model. Each as-
sembly step passes on a set of samples of its likelihood to the
next; this yields effective pruning of the space of hypothe-
ses. The collection of available nine-segment hypotheses is
then represented by a set of equivalence classes, which yield
an efficient pruning process. The posterior for the number
of people is obtained from the class representatives. People
are counted quite accurately in images of real scenes using
an MAP estimate. We show the method allows top-down as
well as bottom up reasoning. While the method can be over-
whelmed by very large numbers of segments, we show that
this problem can be avoided by quite simple pruning steps.
Keywords: Object recognition, sampling, Probabilistic in-
ference

1. Introduction

Finding people in static images is difficult, because the
number of internal degrees of freedom defeats simple cor-
respondence reasoning. However, people can be quite ac-
curately modeled as assemblies of cylinders, and these as-
semblies are constrained by the kinematics of human joints.
There is a long tradition of using these constraints to find
people (e.g. [1, 6, 8, 3]; pedestrians in a standard configu-
ration can be found by template matching [7]). No existing
work can count people, and serious difficulties with seg-
mentation remain.

These segmentation difficulties can only be overcome by
using object level knowledge as early as possible in the seg-
mentation process. We represent people as collections of
nine body segments, one for the torso and two for each limb
(the face could be dealt with by current, very accurate, face-

finding algorithms [10, 9]). In this strategy, we find individ-
ual body segments; these segments are then assembled into
pairs that satisfy kinematic constraints; the pairs are assem-
bled into triples, etc. The main advantage of this approach is
that poor hypotheses can be pruned early (as in [5]). How-
ever, there is the danger of pruning a hypothesis that is lo-
cally poor but which is a component of a good global hy-
pothesis. This is a common problem in recognition — false
negatives are much harder to resolve than false positives —
and is aversion of the horizon problem in search.

We finesse this difficulty by using a probabilistic in-
ference method. A standard method forms a posterior,
and then represents possible inferences by drawing sam-
ples from this posterior [4]. Building a good sampler
for finding people is tricky, because the posterior that a
person is present given a single segment will be very
small, so that it is difficult to start the assembly pro-
cess. Instead, wesample the likelihood. We use the
term “assembly” to refer to a group of segments, labeled
with correspondence to human body segments. For any
nine segment assemblyA, define the likelihoodL(A) =
Pr[A will appear in the imageja person is present]. We
now sample subassemblies from the available segments in
the image according to marginalised versions of this dis-
tribution. This prunes the set of assemblies without deny-
ing any hypothesis a chance to grow. We show the results
may be used to count people in the image, segment them
from the background, and infer their configurations, and
find body parts missed by the original segmentation.

1.1. Resampling

There are too many nine segment assemblies to com-
pute the likelihood for each. However, we can build assem-
blies incrementally. For example, having generated a set
of samplesfsTg of potentialtorso segments and samples
fsLUAg of left upper arm s, we can form all combina-
tionsfsT; sLUAg and then resample it, so that the resulting
pairs(sT; sLUA) come from the appropriate marginal like-
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Figure 1. Symmetries(a)and segments(b) produced
for an image. (c): Assemblies corresponding to the
same person often sharetorso s

lihood. We can proceed by similarly sampling 3-, 4-,. . . ,
9-segment sub-assemblies, in such a way that the resulting
set of 9-segment assemblies is sampled fromL(�).

At each stage, we useimportance sampling, which is
a method for drawing samples from (possibly intractable)
distributions (as used in [2]). In particular, to draw a
sample fromg(x), we first draw a large number of inde-
pendent samplesfs1; : : : ; sng from a proposal distribution
f(x), and then sets = si with probability proportional to
wi = g(x)

f(x) . As n ! 1, the distribution for the samples
will approachg(x). In our case, the proposal distributions
are the marginal likelihoods for the subassemblies. Thus,
we are more likely to propose a pair(sRUA; sRLA) if the two
segments individually are more likely to beupper right
arm andlower right arm of a person.

2. Implementation

Our system starts by findingsymmetries(fig. 1(a)),
which are pairs of edge elements that are approximately
symmetric about some symmetry axis and whose tangents
are approximately parallel to that axis. These symmetries
are grouped intosegments— extended groups of symme-
tries which approximately share the same axis — (fig. 1(b))
using an expectation-maximization algorithm that assumes
a fixed number of segments. From the segments, we use
a learnedlikelihood modelto formassembliesby sampling
(fig. 1(c)). Finally, the set of assemblies is replaced with a
smaller set ofrepresentatives, which are used to count peo-
ple in the image.

2.1. Finding Segments Using EM

Each segment is represented with asymmetry axisand a
width. Each symmetry has a label showing which of at most
one segment it belongs to. A symmetry fits a segment best
when the midpoint of the symmetry lies on the segment’s
symmetry axis, the endpoints lie half a segment width away
from the axis, and the symmetry is perpendicular to the axis
(that is, the axes of symmetry of the symmetry and the seg-
ment coincide). This yields the conditional likelihood for a
symmetry given a segment as a four-dimensional Gaussian
(two numbers for each endpoint), and an EM algorithm can
now fit a fixed number of segments to the symmetries. After
that, we determine where each segment begins and ends by
finding the range of symmetries for which this segment has
the largest posterior. If there is a large gap between these
symmetries (that is, symmetries from different image re-
gions are attributed to the same segment), then the segment
is broken into two or more pieces.

2.2. Representing Likelihoods for People

The likelihood for a nine segment assembly is computed
from a set of 41 geometric features, invariant to translation,
rotation and scale. These include angles and distances be-
tween segments, aspect ratios of segments, length ratios,
etc. As nine rectangles have 41 degrees of freedom up to
a rigid transformation, we choose the features so as to have
a one-to-one correspondence between the feature space and
the space of all assemblies. Each feature in our model de-
pends on either one or two segments, and the two-segment
features can be computed either from the two halves of
the same limb (such asright upper arm andright
lower arm ), or from an upper limb and the torso.

This choice of features allows us to assume that features
are independent with a relatively small error. The main
errors will be due to interactions between kinematic con-
straints on the hips and shoulders, and viewing pose. This
assumption is attractive because the likelihood has an espe-
cially simple form,

L(A) =

41Y

i=1

di(fi); (1)

wherefi is the value of theith feature, anddi(fi) is the
corresponding one-dimensional marginal likelihood. In our
experiments, we chose fordi(�) to be a histogram for the
valuesfi.

2.3. Building Assemblies Incrementally by Resam-
pling

We fix a permutation (l1; : : : ; l9) of labels
fT; LUA; : : :g, and generate a sequence(S1; : : : ; S9)



Figure 2. We sample assemblies incrementally, by
generating sets of samples of 1-, 2-, ..., 9-segment as-
semblies, so that the latter are drawn from the likeli-
hoodL(�)

of multisets of samples, where eachSk containsN (not
necessarily distinct) assemblies ofk segments labeled as
l1; : : : ; lk (fig. 2). For example, in our implementation,
(l1 : : : l9) = (T; LUA; LLA; : : :), and soS1 will contain
the samples(sT) of torso segments, whileS3 will
contain samples(sT; sLUA; sLLA) of triples corresponding
to the torso , the left upper arm and the left
lower arm . The samples inSk are drawn from the
marginal likelihoodLl1:::lk (A) =

Q
i di(fi), where the

product is over all the features computable from segments
labeled asl1; : : : ; lk. We write sli for the segment of the
sub-assembly whose label isli. For our feature set and
the choice of(l1 : : : l9), each of the marginal likelihoods
Ll1:::lk(sl1 ; : : : ; slk ) models the probability that the sub-
assembly(sl1 ; : : : ; slk ) is seen in a random view of a
human.

We generate the set of samplesSk+1 from Sk using im-
portance sampling. First, we form the set of sub-assemblies
(sl1 ; : : : ; slk ; slk+1) for all groups(sl1 ; : : : ; slk) 2 Sk and
all choices ofslk+1 . The first component is a sample from
the relevant marginal distribution. We nowresamplethis
set of samples, by independently drawingN samples, with
the probability of drawing(sl1 ; : : : ; slk+1) proportional to

w(sl1 ; : : : ; slk+1) =
Ll1:::lk+1

(�)

Ll1:::lk
(�) =

Q
i di(fi), where the

product is over all features that depend onslk+1 and, possi-
bly, some ofsl1 ; : : : ; slk .

2.4. Directing the sampler

Our sampler is working in a discrete space of labels and
image segments. It can be difficult to focus the activity of
such samplers on components with large probability. For
example, if there are two people in the image, and one re-
sults in a large group of segments and the other in a small
group (due to mischief in the segment finder), the sampler
may repeatedly draw samples from the large group corre-
sponding to the one person, and never get to the other. A
natural strategy is to break the domain into a set of equiv-
alence classes, sample the classes, and then sample within
the classes drawn by that sampler.

We define equivalent assemblies to be those that label the

same segment as atorso . This is a good choice, because
different people in an image will tend to have their torsos
in different places. We represent the class by the assembly
that has the highest likelihood. This means that we have a
tight upper bound for the likelihoods within the equivalence
class, which means that classes that are omitted when we
sample classes tend to be those which contain elements of
relatively low likelihood. For an exact algorithm we would
need elements within classes to have similar likelihoods;
our results suggest that this is not particularly important.

The highest likelihood assembly is found by a simple
greedy algorithm. As an example, suppose that all of the
segments in an assembly, except the lower left arm, are
fixed, and we are to choose the lower left arm that maxi-
mizes the likelihood of the resulting assembly. It is easy
to see that, in our model, the lower left arm can be found
by considering all the pairs of a lower left arm (which can
be any segment) and the upper left arm (which is fixed),
and choosing the one with the highest marginal likelihood
LLUA;LLA. Now, let us suppose that we have fixed atorso
and, possibly, some limbs, and we want to add the left arm
that would maximize the likelihood of the result. First, we
will find the highest-likelihood left arm for each choice of
the upper arm. Since no feature involves the left arm and
any other limb, we can choose the best left arm by consid-
ering all the pairs of thetorso (which is fixed) and a left
arm, and choosing the one with the largest marginal likeli-
hood.

Now we have a greedy algorithm which, for each choice
of upper left arm, finds the lower left arm so as to max-
imize the marginalLLUA;LLA, and similarly for the other
limbs. Then, for each possibletorso segment, the limbs
are added in a sequence, maximizing the corresponding
marginal likelihoodsLT;LUA;LLA; LT;LUA;LLA;RUA;RLA;

etc. At the end, we have the largest likelihood assembly
for eachtorso segment. The algorithm is efficient: if
there aren segments in the image, we never have more than
n sub-assemblies of each type, thus the algorithm runs in
O(n2) time (and much faster in practice, if we only try to
pair up segments that are close).

Although the upper bounds provided by this algorithm
are very effective for directing the sampler to relevant im-
age regions, they may not be tight. For example, in the
resulting assemblies the legs may coincide, since ensuring
distinct legs would require a (binary) feature involving both
legs. Such assemblies do not consist of 9 segments; they do,
however provide upper bounds on the likelihoods of assem-
blies with a given segment as thetorso .

3. Counting People

Our sampling algorithm allows to count people in im-
ages. To estimate the number of people, we begin by select-
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Figure 3. The representatives that do(a) and do not
(b) correspond to the configurations of people in the
images.

ing a small set ofrepresentative assembliesin the image,
and then use them for counting.

3.1. Finding representative assemblies

We assume that distinct people have distinct torsos, ac-
cepting that occlusion of one torso by another will lead to
a miscount. We break the set of all assemblies in the im-
age into (not necessarily disjoint)blocks— sets of assem-
blies such that any two assemblies from the same block have
overlappingtorso s. Then, therepresentativeis chosen
from each block as the assembly with the highest likelihood,
over all assemblies available from the block. Because we
have assumed that any people in the image are spaced apart,
we can use representatives to count people — by replacing
the set of assemblies with that of representatives, we do not
diminish the count. Indeed, any assembly that is not a rep-
resentative must be overlapped by a higher-likelihood rep-
resentative, and so if there was a human assembly in some
region of the image, there will be a representative there as
well. In fact, the configuration of a person can often be in-
ferred from that of representatives (Fig. 3).

We can efficiently find representatives, since we can use
the upper bounds on the likelihoods, computed in Sec-
tion 2.4. In particular, if the algorithm of Sec. 2.4 pro-
duced a valid assembly (no coinciding segments) for some
torso segment, then sampling need not be performed for
that torso (since this assembly has a higher likelihood
than any other we can obtain by sampling). If, however,
the assembly obtained for the upper bound is not a valid
one, we have to sample assemblies with the giventorso ,
but only retain the one with the highest likelihood (since all
of the assemblies share thetorso ). Furthermore, we need
not sample for a giventorso segment if there is already
an overlapping assembly, whose likelihood is greater than
the upper bound for the giventorso .

3.2. Estimating the number of people

Once the representative set has been computed for
an image, we want to obtain the estimate on the num-
ber of people in the image. We assume that assem-
blies corresponding to people do not overlap and have
independent configurations. Let the set of represen-
tatives befA1; : : : ; Amg, and let us consider any set
G � f1 : : :mg, such that no assemblies fromfAiji 2
Gg overlap. We will look at theposterior probability
Pr[each ofAi represents a personjimage data] that the rep-
resentativesfAiji 2 Gg are people whilefAj jj 62 Gg are
not. To count people, we choose the setG for which the
posterior is largest, and the sizejGj will give the MAP esti-
mate of the number of people in the image. We could also
represent this posterior as a set of samples to give some in-
sight into the reliability of a particular count.

We assume that each assembly has thea priori prob-
ability � of being a person, independently of the others.
Then, the prior forG is �(G) = �jGj(1� �)m�jGj, and the
posterior is proportional toPr[A1; : : : ; AmjG]�(G).
Since the human assemblies do not overlap,
Pr[A1; : : : ; AmjG] = 0 if some of fAiji 2 Gg
overlap. Otherwise, we havePr[A1; : : : ; AmjG] =Q

i2G L(Ai)
Q

i62G Lnon(Ai); where we still use
L(A) = Pr[person in random configuration looks likeA],
and define Lnon(A) =
Pr[Ajrandom view not containing a person]. Finally,
we assumeLnon(�) to be uniform. We get that, for non-
overlappingfAiji 2 Gg, the posterior is proportional to
Lnon

m�jGjQ
i2GL(Ai)�

jGj(1� �)m�jGj, or

cjGj
Y

i2G

L(Ai); (2)

where the constantc = �
(1��)Lnon

is to be estimated so as
to yield best classification.

4. Results

To learn the likelihood modelL(�), we used a set of 193
training images, scanned from [11]. Each contained a pho-
tograph of a single person, standing against a uniform back-
ground. All the views were frontal and all limbs were vis-
ible, although the configurations varied. The models wore
swimsuits or no clothes, since clothes make it hard to pro-
pose body segments. The symmetries produced for each
image were used to determine sets of segments, although
the segment finder was not the EM-based one used on the
test data. We hand-labeled the segments by marking those
corresponding to the 9 body segments. In fact, the train-
ing images were the part of a larger collection that resulted
in complete assemblies (no segment finder misses). Since



the likelihood should not favor an assembly over its mirror
image, we expanded the training set by adding the mirror
image of each assembly, thus resulting in 386 configura-
tions. The likelihoodL(�) was defined as in Eqn. (1), where
di(�) were the histograms (with 20 bins) for each of the 41
geometric features for the training set.

4.1. Test data

The test data included 145control imageswith no peo-
ple, and 228, 72, and 65 images with 1, 2, and 3 people,
respectively. The control images came from the COREL

database, while those with people were obtained by com-
bining single-person images from the same collection as,
but distinct from, the training data.

The sets of symmetries were produced for each test im-
age. The parts of the control images differing significantly
in color from people’s skin (no more than 1/2 of each im-
age) were blanked out before finding symmetries; no such
preprocessing was done for images with people. The EM-
based segment finder was applied to each set of symmetries
by fitting 50 mixture components to each control image, 20
and 40 (on separate runs) to the 1-person images, and 40
and 60 to both 2- and 3-person images. The actual number
of segments produced varied, due to splitting of segments
with gaps. The resulting collections of segments were then
used for testing.

To be able to find both straight (1 segment) and bent (2
segments) limbs, we added both halves (lengthwise) of each
segment to the segment sets. The halves of a segment, how-
ever, could only appear either together in the same limb, or
as thetorso .

4.2. People vs No people

We used sampling and representative selection to count
people, as in Sec. 3.2. For each image, we found the MAP
subsetfAiji 2 Gg of representatives classified as people,
and classify the image as containing a person ifjGj � 1,
and no people ifG = ;. Fig. 4(a) shows how the success of
this classification depends on the value ofc, from Eqn. (2).

4.3. Counting people

Similarly to the above, we used the sizejGj of the MAP
setG as the estimate of the number of people. Fig. 4(b)
shows, for images withk = 0 : : : 3 people, the fraction of
segment sets that yielded the correct estimatejGj = k.

The 3-person images did not yield as good results as
those with fewer people. This could be due either to the
fact that with more people in the image the segment finder
is more likely to miss a body segment, or to our choice of
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Figure 4. Percentage of correct decisions for Person
vs No person classification (a) and Counting (b), as
a function ofc. Each figure shows the percentages
separately for images with 0,1,2, and 3 people

representatives: it is possible that, while non-overlapping
assemblies exist for each of the people in the image, the rep-
resentatives do overlap, thus diminishing the people count.
For many cases, the representatives give quite a good indi-
cation of the configuration of the people present (figure 6).

5. Discussion

The control set used in these results had been censored
to remove regions of high texture and of a particular range
of colours (censored regions in figure 5 are shown in white).
This significantly reduces the number of segments reported.
If one uses an uncensored control set, the program al-
most always finds one person because the number of avail-
able segments overwhelms the selectivity of our constraints.
This suggests that segment finding is insufficient to segment
people; other possible tests include using the characteristic
contour shape of muscle or a more detailed shading test.

Seeing recognition as an inference problem has the ad-
vantage that top-down information flow can coexist with
bottom up information flow quite reasonably. Often, the
segments corresponding to one or more of a person’s body
parts are missing from the segment set of the image. This
can be caused by either occlusion or a failure of the segment
finder. For suchincomplete assemblies, the likelihoodL(�)
is not available; nevertheless, we want to be able to find in-
complete assemblies. Furthermore, having found one, we
want to guess where the missing segments could be. Then,
we could go back to the image and try and analyze the possi-
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Figure 5. A control image for which a human assem-
bly was found

bility of the occlusion, or re-run the segment finder, paying
closer attention to the specified image regions, so as to find
the missing segments. A method currently in development
would solve the problem by first adding a large number of
random “dummy segments” to the segment set, and then
running our original sampling algorithm, limiting the num-
ber of dummy segments in an assembly. This would allow
to obtain samples of incomplete assemblies from the cor-
responding marginal likelihoods, and those of missing seg-
ments (the dummy segments in assemblies) — from con-
ditionalsPr[missing segmentsjAinc], for each incomplete
assemblyAinc.

Performance of our algorithm would be improved by a
better likelihood model and by principled feature selection.
Future work will involve incorporating the segment finder
and the assembly builder in a single Markov Chain Monte-
Carlo framework yielding a chain of probabilistic reasoning
from pixel to person.
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