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Abstract

We address the classic problems of detection, segmenta-

tion and pose estimation of people in images with a novel

definition of a part, a poselet. We postulate two criteria

(1) It should be easy to find a poselet given an input image

(2) it should be easy to localize the 3D configuration of the

person conditioned on the detection of a poselet. To permit

this we have built a new dataset, H3D, of annotations of

humans in 2D photographs with 3D joint information, in-

ferred using anthropometric constraints. This enables us to

implement a data-driven search procedure for finding pose-

lets that are tightly clustered in both 3D joint configuration

space as well as 2D image appearance. The algorithm dis-

covers poselets that correspond to frontal and profile faces,

pedestrians, head and shoulder views, among others.

Each poselet provides examples for training a linear

SVM classifier which can then be run over the image in a

multiscale scanning mode. The outputs of these poselet de-

tectors can be thought of as an intermediate layer of nodes,

on top of which one can run a second layer of classification

or regression. We show how this permits detection and lo-

calization of torsos or keypoints such as left shoulder, nose,

etc. Experimental results show that we obtain state of the

art performance on people detection in the PASCAL VOC

2007 challenge, among other datasets. We are making pub-

licly available both the H3D dataset as well as the poselet

parameters for use by other researchers.

1. Introduction

The Oxford English Dictionary defines pose as:

An attitude or posture of the body, or of a part

of the body, esp. one deliberately assumed, or in

which a figure is placed for effect, or for artistic

purposes.

This definition captures the two aspects of a pose:
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Figure 1. Poselets are parts that are tightly clustered in both ap-

pearance and configuration space. The figure shows positive ex-

amples for some of our poselets: #1 (frontal face), #114 (right arm

crossing torso), #20 (pedestrian), #79 (right profile and shoulder)

and #138 (legs frontal view).

1. A configuration of body parts such as head, torso, arms

and legs arranged in 3D space.

2. The resulting appearance, a 2D image created for a

viewer, or a camera.

The configuration space of an articulated body can be pa-

rameterized by the 3D coordinates of the joints, and the

appearance space by the pixel values. The configuration

space of joints has many degrees of freedom, and the ap-

pearance is additionally a function of clothing, illumination

and occlusion. These phenomena collectively make the de-

tection, joint localization and segmentation of people in im-

ages some of the most challenging problems in computer
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vision. In keeping with the “divide and conquer” principle,

it is natural to think that “parts” could help by factoring the

complexity. But how do we decide what good parts are?

The principal contribution of this paper is a new no-

tion of part, a “poselet”, and an algorithm for selecting

good poselets (Figure 1). We use the term poselet to sug-

gest that it describes a part of one’s pose. Since we need

parts to provide a bridge from appearance space to config-

uration space, we argue that a “good” poselet must satisfy

the following two criteria:

1. It should be easy to find the poselet given the input im-

age. This suggests that the poselet must be tightly clus-

tered in appearance space, because low in-class vari-

ability leads to better detection performance for a clas-

sifier.

2. It should be easy to localize the 3D configuration of

the person conditioned on the detection of a poselet.

If a poselet corresponds to a tight cluster in configura-

tion space, then this will be the case, at least over the

support of the poselet.

In order to operationalize this intuition that a poselet should

be tightly clustered in both appearance and configuration

space, we will need training data that is annotated with 3D

configuration information, not just a bounding box or the

pixel support map for a person. We have developed a novel

dataset for this purpose, which we call H3D, or Humans

in 3D. This currently consists of 2000 annotations of hu-

mans, including the 3D locations of 19 keypoints (joints,

eyes, ears and nose) and 15 kinds of pixel-level labels of

image patches, such as ”face”,”hair”,”upper clothes”,”left

arm”, etc. H3D allows us to use the 3D configuration prox-

imity (criterion 2) as a starting point of poselet selection.

As we show on Figure 7, that allows us to generate training

examples that may vary in appearance but have similar se-

mantics - human heads from behind, or people with crossed

hands, or the legs of a pedestrian making a step, etc. As a

result, our poselet classifiers are directly trained to handle

the visual variation associated with a common underlying

semantics.

Given a set of poselets (256 linear support vector ma-

chines in the current implementation), we scan the input

image at multiple scales and use the outputs of these to,

in turn, vote for location of the torso bounds or body key-

points (Section 5). This is essentially a Hough transform

step in which we weigh each vote using weights learned in

a max-margin framework [10].

We can contextualize our research by noting that past

work on analyzing images of people has defined parts by

considering just one of the two criteria we outlined above:

1. Work in the pictorial structure tradition, from Felzen-

szwalb and Huttenlocher [6] and others [15, 14, 7, 1],

picks a natural definition of part in the 3D configu-

ration space of the body, guided by human anatomy.

Even earlier work with “stick figure” representations

using generalized cylinders to model various body

parts made essentially the same choice [12, 17]. While

these parts are the most natural if we want to construct

kinematic simulations of a moving person, they may

not correspond to the most salient features for visual

recognition. It may be that ”half of a frontal face and

a left shoulder” or ”the legs of a person making a step

in a profile view” are particularly discriminative visual

patterns for detecting a human–does it matter that these

are not “parts” in an anatomical sense, or that English

doesn’t have single words for them? In our context,

this line of research satisfies criterion 2, but not crite-

rion 1.

2. Work in the appearance based window classification

tradition directly tries to find weights on various fea-

tures for best classification performance. For example,

Oren et al. [13] and Dalal and Triggs [3] train holistic

classifiers for pedestrian detection. These approaches

degrade in the presence of articulations, and Felzen-

szwalb, McAllester and Ramanan [5] have general-

ized the approach to allow an intermediate layer of

“parts” that can now be shifted with respect to each

other, rendering the overall model deformable. The

templates for these parts emerge as part of the overall

discriminative training. Such approaches, however, are

not suitable for pose extraction or localization of the

anatomical body parts or joints. An alternative way to

provide flexibility is by the use of point descriptors as

in the work of Mori and Malik [11], or Leibe et al. [8].

What is common to all these approaches is the parts or

point descriptors are chosen based purely on appear-

ance (criterion 1) but not configuration (criterion 2).

Finally, there are now some hybrid approaches which have

stages of one type followed by a stage of another type. Fer-

rari et al. [7] start with holistic upper-body detection based

purely on appearance, followed by the application of a pic-

torial structure model in regions of interest. Andriluka et

al. [1] train part detectors for anatomically defined body

parts which then are combined using pictorial structures.

Unlike what we propose with poselets, the parts themselves

are not jointly optimized with respect to combined appear-

ance and configuration space criteria.

Our method combines the benefits of both of these prior

directions of research. We show state-of the-art perfor-

mance (Section 6), including on the PASCAL VOC 2007

challenge, where our AP for the person category is 0.365.

As far as we know the current best result is [5] with AP of

0.368.



2. H3D, a Dataset of Humans in 3D

Human detection and recognition has been a much

studied subject and there are many datasets with annota-

tions varying from bounding boxes1 [4], to region anno-

tations [16, 21] and 2D joint locations [7, 21, 19]. Var-

ious data collection schemes have been explored, includ-

ing internet-scale collaboration [16] and using Mechanical

Turk [19] and multiple strategies have been employed for

increasing the quality of the data. However, we believe our

dataset is unique in cross-referencing the full 3D pose, key-

point visibility and region annotations.2 We believe 3D in-

formation and visibility are very important for generating

better training data, building accurate statistics of 3D poses,

decomposing camera parameters and many other tasks. Our

part selection method will not work well using 2D annota-

tions.

H3D currently consists of 2000 annotations3 which we

have split into 1500 training 500 test human annotations.

We have chosen the images from Flickr with Creative Com-

mons Attributions License4 which allows free redistribution

and derivative work. H3D provides annotation of 15 types

of regions of a person (such as ”face”, ”upper clothes”,

”hair”, ”hat”, ”left leg”, ”background”) and 19 types of

keypoint annotations, which include joints, eyes, nose, etc.

Cross-referencing appearance and 3D structure allows us to

do new and powerful types of queries for pose statistics and

appearance, described below. The dataset is available on

our web site.

Our annotation environment is shown on Figure 2. The

time to create an annotation varies on the difficulty of the

annotation and the expertise of the annotator, but on average

it takes about 5 minutes to specify the keypoints, set the 3D

pose and label the regions. In this section we give examples

of some of the types of queries supported by H3D.

• Keypoint Distributions: Using the annotated key-
point locations, we can determine the expected image

locations of a set of keypoints conditioned on the lo-

cations of other keypoints. Such distributions would

be valuable for pose extraction algorithms. Figure 5

(right) shows our prediction for the locations of the left

ankle and right elbow conditioned on the shoulder lo-

cations for frontal views. We generated these by trans-

forming each 3D pose to match the shoulder locations

and then plotting the projections of the left ankle and

1http://pascal.inrialpes.fr/data/human
2Motion capture datasets like HumanEva [18] do provide 3D informa-

tion, but they do not capture the statistics of ”people in the wild”, neither

in terms of pose nor appearance. We are interested in the distribution of

poses and appearances of people in typical consumer photo albums.
3There are 1000 real annotations, which we have doubled by mirroring

them along a vertical axis. Most H3D tasks have no axial symmetry, so the

mirrored versions are just as important. We also ensure that there are no

images in the training set whose mirrored version is in the test set
4http://creativecommons.org/licenses/by/3.0

Figure 2. Top: Our Java3D annotation tool allows the user to mark

keypoints and displays the 3D pose in real time. Users can mark

the image while looking at the 3D pose from another view. Our

3D extraction is based on the Taylor method [20] which we have

extended to further ease accurate reconstruction. We have intro-

duced extra constraints and global controls that use gradient de-

scent in the overconstrained space to help the user adjust the pose,

straighten the torso, etc. Bottom: Our region labelling tool per-

forms hierarchical oversegmentation of the image using [9] to

allow the user to efficiently and accurately assign region labels.

Users start labelling a rough version and refine the labels.

Figure 3. H3D can decompose camera view point, pose and ap-

pearance and allow us to model them separately. Left: Camera

azimuth angle relative to frontal pose. In our dataset 39.6% of the

time the human pose is frontal (between −15
◦ and 15

◦) Right:

Expected arm bending angle. 33% of the time the arm is almost

straight, bent less than 30% degrees. The physical constraints of

the human body are implicitly captured in the H3D statistics: no

arms bend backwards.

right elbow. Note that H3D leverages the data much

more than traditional labelled 2D image datasets. The

same data could also be generated using a traditional

dataset of images with 2D annotated joints, but only

images of frontal view annotations will contribute to

the statistics. In contrast, H3D projects every 3D pose

to the desired view and thus every annotation will con-

tribute to the statistics.



• 3D Pose Statistics: The statistics in 2D are less
smooth than in 3D because of foreshortening. For ex-

ample, the left ankle can approach the shoulder in Fig-

ure 5 (right) if the person is lying down with legs to-

wards the camera. On the other hand, in 3D the statis-

tics are smoother due to physical length constraints.

Since we have the relative 3D coordinates of all joints,

we can compute expected 3D joint locations. In Fig-

ure 3 (right) we have explored the distribution of an-

gles between the upper and lower arm segments.

• Camera View Statistics: Figure 3 (left) also shows
that H3D can decompose camera view point from pose

and produce separate statistics for each.

• Appearance Queries: Registering 3D views with 2D
images is powerful, as it allows us to query for the

appearance of poselets. Given the normalized loca-

tions of two keypoints (which define a similarity trans-

form), a target aspect ratio and resolution, H3D can

extract patches from the annotated images. H3D can

also leverage our region annotations to include or ex-

clude specific regions. Figure 4 shows the result of

displaying people whose hip-to-torso angle is less than

130 degrees (i.e. sitting people). We show them with

the background and any occluders masked out.

• Pixel Label Probability Statistics: Figure 5 (left)
shows howH3D can generate region probabilitymasks

conditioned on joint locations and pose. Traditional

2D datasets could also be used to generate such masks,

but they will be noisy due to foreshortening. For ex-

ample, a closeup of a person turned at 45 degrees will

have the same keypoint projection of the eyes/hips than

a far away person facing the camera, but the spatial

probability of their upper clothes regions will be very

different due to scale, and without 3D information we

cannot distinguish between the two. We have used

H3D’s ability to generate soft region labels as shown

on Figure 12.

3. Finding Poselet Candidates

Figure 6 illustrates what we mean by a poselet. A poselet

describes a particular part of the human pose under a given

viewpoint. It is defined with a set of examples that are close

in 3D configuration space. It is useful to think of pose-

lets as clusters in configuration space. Each example of a

poselet has a corresponding rectangular patch at a given po-

sition, orientation and scale from the annotation of a given

person (bottom row of Figure 6). Each example also cor-

responds to a point in the configuration space of 3D poses.

It is defined as the coordinates of keypoints of the human

pose transformed into the example’s coordinate space (top

row of Figure 6). We define the (asymmetric) distance in

configuration space from example s to example r as:

Figure 4. Sitting people with the background masked out. To select

sitting people, we asked H3D for people whose torso-to-hip angle

is below 130
◦. They are shown sorted by torso-to-hip angle.

Figure 5. Left:H3D can generate conditional region probability

masks. Here we show the probability of upper clothes (red) and

lower clothes (green) given the location of the eyes (left picture) or

hips (right picture) of frontal-facing people. Contours at 0.1, 0.3

and 0.5 are shown. We could compute conditional probabilities on

more variables if the size of our dataset allows for meaningful pre-

dictions. Right:H3D can generate scatter plots of the 2D screen

locations of the right elbow and left ankle given the locations of

both shoulders. Because the data is in 3D, it leverages informa-

tion even from profile-facing poses by turning them around and

projecting their keypoints.

ds(r) =
∑

i

ws(i)||xs(i) − xr(i)||
2

2
(1 + hs,r(i)) (1)

where xs(i) = [x, y, z] are the normalized 3D coordinates
of the i-th keypoint of the example s. The weight term
ws(i) ∝ exp(−xs(i)

2/(2σ2)) is a Gaussian with mean at
the center of the patch. The Gaussian is designed to give

high weights to terms near the center and low weights to

terms far outside the patch. (While the top row of Figure 6

only shows keypoints inside the patch, we also consider

nearby keypoints outside the patch). The term hs,r(i) is
a penalty based on the visibility mismatch of keypoint i in
the two examples. If keypoint i is visible or invisible in both
examples, then hs,r(i) = 0. Otherwise hs,r(i) = a, a > 0.



Figure 6. A poselet describing a frontal face and five of its exam-

ples. Top row: The configuration spaces showing the eyes, nose

and left ear keypoints. Bottom row: the corresponding image

patches. By construction all examples of a poselet have similar

configurations and are therefore semantically similar.

In addition, it is possible that the i-th keypoint be present
in one example but missing from the other. In this case the

respective term is ws(i)b where (σ, a, b, h) are fixed param-
eters of the model.

Given an example s from human annotation as, H3D can

efficiently find the corresponding closest example r from
annotation ar. In particular, H3D uses a weighted least

squares fit based on ds(r) to derive the similarity trans-
form (tx, ty, α, s) that brings the keypoints of annotation
ar as close as possible to the normalized coordinates of s.
We can then measure the quality of the match based on the

residual distance ds(r). Note that the distance is measured
in 3D space which allows us to distinguish between key-

points near each other and ones with large foreshortening

and learn them in different poselets. Figure 7 shows some

query examples on the left and their corresponding closest

matches on the right. Notice how our pose space proximity

results in examples that, while visually different, are seman-

tically quite similar. This is a very important advantage of

our method: our poselet classifiers are going to learn the

kind of visual dissimilarity that corresponds to instances of

the same semantic class, and thus learn to recognize the se-

mantic class.

We have a simple and efficient procedure to generate a

poselet candidate from our training data: Given a rectangu-

lar window from one human annotation, we use the above

described least-squares method to find the closest corre-

spondingwindow from every other human annotation in our

training set and we keep the examples whose residual dis-

tance is less than λ. The parameter λ controls the tradeoff
between quantity and quality of the examples. For instance,

for a very aggressive setting our frontal face poselet will

start to include some profile faces as well. We set λ em-
pirically to a value of 0.1 which results in lots of examples

without affecting too much the quality.

Using the above procedure we could generate hundreds

Figure 7. Example query regions (left column) and the correspond-

ing closest matches in configuration space generated by H3D.

Configuration space proximity tends to produce semantically sim-

ilar examples, although they may be visually very different. The

first row, for example, tends to generate frontal-facing people

whose left hand is raised near their head. The second row shows

examples whose right foot is closer to the camera than their left

foot; i.e. matching is done in 3D space.

of thousands of poselet candidates, for example by starting

from random windows. We chose instead to run a scanning

window over all positions and scales of all annotations in

our training set. We don’t need to search over orientation

as our least-squares fit will discover rotated examples of the

same poselet. This procedure results in about 120K pose-

lets, which, by construction, are semantically tight. We then

prune them by removing poselets with very few examples

(which correspond to rare configurations) and poselets that

are too close to each other in configuration space (which

could happen as a result of double-counting during scan-

ning)5. This left us with about 2000 poselet candidates.

4. Selecting and Training Poselets

We train classifiers to detect the presence of each poselet by

using the examples of the poselet as positive examples, and

random image patches from images not containing people

as the negative examples. We use a linear SVM and our

features are Histograms of Oriented Gradients as proposed

by Dalal and Triggs [3]. We use their recommended settings

for all parameters, except our scan window has dimensions

of 96x64. We train using bootstrapping: we train an initial

classifier using the positive and a random set of negative

examples, then we use it to scan over images not containing

people and collect false positives, and then we do a second

round of training by including these hard false positives into

the negative training set.

Not all 2000 poselet candidates are suitable for training

– some may not train well and others may be redundant. To

reduce the computational complexity, we first prune the set

of poselet candidates by an order of magnitude: Using an

estimate of their cross-validation score and their pairwise

5In our current implementation we do not scan over rotations; thus we

also remove poselets that have wide orientation variance
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 #3 (frontal face)

 #21 (upper torso back)

 #24 (head zoom out)

 #33 (upper torso front)

 #39 (upper body back)

 #60 (upper body)

 #62 (upper body zoom out)

#166 (face & shoulder)

Figure 8. The comparative performance of our top poselets in iso-

lation evaluated on the H3D test set. Poselets focused on the upper

body tend to perform best.

distances in configuration space, we use a greedy search to

choose a subset of 300 poselets that have high cross val-

idation score and are not too close in configuration space

to other chosen poselets. We also filter their examples by

pruning examples that the trained SVM scores lower than a

given threshold η. Such examples typically include severe
occlusions and removing them improves performance.6.

Examples of some of our poselets are shown on Figure 1.

Our algorithm selects frontal faces and profile faces at dif-

ferent zooms, people facing backwards, pedestrians, upper

bodies, frontal torso detectors, legs, etc. A lot of the pose-

lets cover the face and shoulder areas, which suggests that

those regions are important for detecting people. The head

and a shoulder were visible in almost all of the annotated

people. Figure 8 shows the performance of our top pose-

lets in isolation. The ROC curve is obtained by running the

poselet detectors over the test set and using the H3D dis-

tance (Formula 1) to distinguish true from false positives.

The top performers are poselets focused on the face at vari-

ous zoom levels. We believe this is because the frontal face

is both easy to detect and occurring in many images of peo-

ple. Legs, on the other hand, are often occluded whereas

hands have large rotation variability and are thus harder to

detect.

5. Combining Poselets for Detection and Local-

ization

By construction a poselet is tightly clustered in configura-

tion space, which makes it effective for estimating the lo-

6Since we cannot afford to do elaborate cross-validation, some poselet

candidates have high cross-validation estimate but perform poorly on real

data. We evaluated the classifiers on real data and pruned 44 of them that

generated the largest number of false positives

cal configuration. We explore this property of poselets for

detecting torsos and for localizing keypoints of the human

body. In this section we refer to torso bounds and key-

points as simply ”objects”. We use the Generalized Hough

Transform framework. Using the H3D training set we fit

the transformation from the poselet location to the object.

We run each poselet detector at every position and scale of

the input image, collect all hits and use mean shift to cluster

nearby hits. Each cluster casts a vote for the object location.

The probability of detecting the object O at position x is:

P (O|x) ∝
∑

i

wiai(x) (2)

where ai(x) is the score that a poselet classifier assigns to
location x and wi is the weight of the poselet. To find

the peaks in Hough space we cluster the cast votes using

agglomerative clustering and we compute the sum in For-

mula 2 over the poselets within each cluster.

The weights w are used to account for the fact that (1)
some poselets are more discriminative than others and (2)

the responses of some subsets of poselets are redundant.

Note also that we train separate weights for each task as

weights are task-dependent. For example, a frontal face

poselet is more discriminating for detecting an eye than for

detecting an elbow.

We use the Max Margin Hough Transform (M2HT )
proposed by Maji and Malik [10] to learn the weights. In-

tuitively, some peaks in Hough space correspond to true de-

tections and others are false positives. M2HT is a discrim-
inative technique that finds the set of weights that maximize

the true positive peaks and minimize the false positives. To

train for the weights, for each detection task we compute

the Hough peaks in the training set (using Formula 2 with

wi = 1) and then we find w using the following optimiza-
tion problem:

min
w,b,ξ

1

2
wT w + C

T∑

i=1

ξi (3)

s.t. yi(w
T Ai + b) ≥ 1 − ξi (4)

w ≥ 0, ξi ≥ 0, ∀i = 1, 2, ..., N (5)

where Aj
i is the score of poselet j in Hough peak i (or 0 if

the poselet did not vote for the peak) and yi = 1 if the peak
is true positive and -1 if false positive. The formulation is

similar to an SVM with the additional positivity constraint

on the weights.

6. Experimental Results

DetectingHuman Torsos. Figure 9 shows the performance

of our torso detector together with other published detec-

tors on the H3D test set. We used the PASCAL VOC cri-

terion [4] for overlap to determine true from false positives
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Poselets (this paper)

Face detector of [2]

Pedestrian detector of [3]

Parts−based detector of [5]

Figure 9. ROC curve comparing our torso detection performance

with the frontal detector of Bourdev and Brandt [2], the pedestrian

detector of Dalal and Triggs [3] and the parts-based deformable

detector of Felzenszwalb, Mcallester and Ramanan [5] using the

H3D test set.

Figure 10. Examples of torso detections using poselets.

using ground truths from H3D annotations of the test set.

We don’t allow multiple hits to map to the same truth. Our

test set is challenging; it contains partially occluded peo-

ple with all kinds of poses, viewpoints and distances. Some

examples of detected torsos are shown on Figure 10. We

adapted the pedestrian detector of [3] and the face detector

of [2] to predict torsos based on locations of found pedes-

trians and faces7. The poor performance of [3] on our test

set is due not only to the difficulty of the test set but also

because [3] was designed to be used for pedestrians only.

Note that pedestrian and face detectors are simply a spe-

cial case of our detector when used with a single part. Our

method can work with any choice of features or training

methodology. In fact, our current features and classifier are

identical to that of [3]; we are only limited by the size of our

data set. Currently H3D generates around 2K training ex-

amples that include frontal faces (vs. 17K examples in [2])

and around 500 training examples for the pedestrian poselet

7We used their original codes, a stride of (8, 8) and a scale step of
1.04 and default settings for all other parameters, except we significantly

increased the margin parameters of the pedestrian detector with the hope

of finding some of the closeups of people.

(vs. 2478 in [3]).

Figure 9 also shows the performance of the part-based

human detector of [5] using their implementation. Their

model is trained to predict bounding boxes of people by fit-

ting a linear regression of the bounding box from the bound-

ing boxes of the parts. To adapt it to predict torso bounds,

we used the same technique by regressing the torso bounds

from the H3D training set. The figure shows that we outper-

form [5] on the H3D test set. To the best of our knowledge,

at the time of this writing [5] has the highest score for the

people category of VOC2007 at AP of 0.368 using the im-

age context and 0.362 without context.

Detecting People on PASCAL VOC2007. We ran the

poselet classifiers on VOC2007 and got AP of 0.365. For

this experiment we used a simple regression of the bounds

of a person from the bounds of the torso using the valida-

tion set. It is interesting that we outperform [5] on H3D

but get comparable performance on VOC2007. Based on

the patterns of test errors we found out that there are many

cases in which our method correctly detects the person (the

torso matches well) but does not predict the bounding box

correctly because the person is partially occluded. In fact,

if we decrease the overlap threshold from 0.50 to 0.49 our

AP becomes 0.375. Our conjecture is that [5] is better at the

task of detecting the visible portions of a person (which is

what VOC2007 uses) as it requires support from the entire

region. We believe our poselets classifier performs well in

the presence of severe occlusion, as long as there are salient

non-occluded poselets, but there is no verification stage to

ensure that all locations agree with the torso hypothesis..

Detecting Keypoints. We trained detectors for joint and

other keypoint locations using poselets. Figure 11 shows the

performance. As expected, keypoints on the face have the

best localization performance. The performance of shoul-

der keypoints is a bit worse due to symmetry of the human

body. On occasion, poselets trained to detect a front fac-

ing person may detect a back-facing person and vote for the

wrong shoulder, which explains why the neck is much better

localized than a shoulder. Hips are much harder to localize

even by humans.

7. Conclusion

We propose a two-layer classification/regression model for

detecting people and localizing body components. Our first

layer consists of poselet classifiers trained to detect local

patterns in the image. The second layer combines the out-

put of the classifiers in a max-margin framework. Other ap-

proaches like [5] similarly propose a two-layer model, but

their part selection is unsupervised. In our work, the 3D

annotation guides the search for good parts. This results

in parts that are tightly clustered in configuration space and

effective at joint localization.

Our method is made possible by the availability of H3D.
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Figure 11. Detection rate of some keypoints conditioned on true

positive torso detection. We consider a detection as correct if it is

within 0.2S of its annotated location, where S is the 3D distance

between the two shoulders.

Figure 12. Soft segmentation into hair, face and torso. Using H3D

region annotations we have computed the pixel label probabilities

of each pixel from each poselet.

The dataset can decompose the pose from the viewpoint and

can generate a variety of statistics on expected pose struc-

ture, region probability masks, keypoint locations, camera

view and appearance. We believe we have only scratched

the surface of what H3D can do. For example, we could im-

prove our keypoint detectors by leveraging the global pose

statistics of H3D to provide configuration constraints. H3D

associates pixel-level region labels with the 3D pose. We

could carry the labels over to the detected poselet locations

to generate a soft segmentation which we could combine

with bottom-up segmentation. While we don’t yet have

quantitative data, an example of soft region labelling using

poselets is shown on Figure 12. H3D is freely available and

we hope that this will encourage researchers to exploit it in

other ways.
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