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Abstract

The goal of this work is to recover human body con-
figurations from static images. Without assuming a priori
knowledge of scale, pose or appearance, this problem is
extremely challenging and demands the use of all possible
sources of information. We develop a framework which can
incorporate arbitrary pairwise constraints between body
parts, such as scale compatibility, relative position, sym-
metry of clothing and smooth contour connections between
parts. We detect candidate body parts from bottom-up using
parallelism, and use various pairwise configuration con-
straints to assemble them together into body configurations.
To find the most probable configuration, we solve an Integer
Quadratic Programming problem with a standard technique
using linear approximations. Approximate IQP allows us to
incorporate much more information than the traditional dy-
namic programming and remains computationally efficient.
15 hand-labeled images are used to train the low-level part
detector and learn the pairwise constraints. We show test
results on a variety of images.

1. Introduction

The goal of this work is to take an image such as the one
in Figure 1(a), detect a human figure, and find the configu-
ration of parts (b). This is a very difficult problem, partly
because human bodies are versatile, presenting a wide range
of pose and aspects, many including self-occlusion, and
partly because variations in clothing and background clutter
deny a simple appearance model.

Given the seemingly insurmountable difficulties, many
existing approaches to this problem make simplifications of
one sort or another, either assuming knowledge of scale and
appearance/color, or using motion information from video
sequences for background subtraction, or limiting evalua-
tion to restricted domains such as walking figures. In these
cases, a canonical tree-based model is typically used to
model body parts, where dynamic programming can be ap-

(a) (b)

Figure 1: The challenge is to take an input image (a), and
recover the body configuration in (b).

plied.

We tackle the problem in a more general setting. With-
out restrictions in pose, appearance, or background clutter,
a tree-based model no longer suffices (cf [11]). Additional
sources of information, not provided by tree based mod-
els, are required to succeed. For example, the symmetry of
clothing is a powerful cue to constrain limb appearance. As
another example, in Figure 1, what reveals the body position
to us are the connection between the two upper legs and the
relative geometric relationship between arms and legs, both
of which are not in the traditional tree-based model.

It is an open question what models can express sufficient
constraints and are computationally feasible. In this work,
we develop a strategy that exploits a rich set of cues, de-
fined on arbitrary pairs of parts, to constrain body config-
urations. We learn these constraints from empirical data
and use Integer Quadratic Programming (IQP) to find the
most probable configurations. IQP is a well-studied com-
putational framework, where efficient approximations exist.
Many cues for estimating human body configuration can
be expressed as pairwise constraints. In our experiments
we have found that IQP works well for this problem. The
IQP framework allows incorporating much more informa-
tion than dynamic programming on trees, and can handle a
much larger set of candidate parts than a brute-force search
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strategy (as used in [11]).

2. Related Work

Finding people is a hard problem; yet it is a problem of
great interest to both scientific researchers and engineers.
One of the earliest lines of research on this problem is in the
limited setting of detecting and tracking pedestrians. Start-
ing with Hogg[5], there has been a great deal of work done
on using 3D kinematic models for tracking [3]. These 3D
models have a high degree of kinematic freedom and typi-
cally require hand initialization. Lee and Cohen [7] recently
managed to use 3D models to detect people mostly in stand-
ing poses, making inference with Data-Driven MCMC.

More recent developments in pedestrian detection typi-
cally use a large amount of training data and make use of
cleverly designed classifiers, the most successful of which
is probably that of Viola et al. [18]. These template-based
approaches do not recover joint locations, and have not yet
been generalized to accommodate more pose variations.

Realizing the difficulties of using 3D part-based models,
many researchers have used of 2D holistic exemplars for
tracking and localizing body parts [17, 10, 16]. The main
problem with such exemplar-based approaches is that they
lack an intrinsic notion of parts, therefore having to deal
with a combinatorial explosion when variations of pose,
clothing, and clutter increase. Shakhnarovich et al. [14] take
a brute-force approach to attacking this complexity explo-
sion, using a variant of Locality Sensitive Hashing to speed
up search. However, such an approach still requires millions
of exemplars, if not more, even just for the upper body with
common poses, background subtraction, and known scale.

There have been many approaches that explicitly model
the human body as an assembly of 2D parts [15, 2, 6]. Typ-
ically they adopt a two-stage strategy: a bottom-up detector
is applied on the image to extract candidate parts, then a
top-down procedure makes inference about the configura-
tion and finds the best assembly. Most approaches use the
canonical tree model for body parts, hence solving the as-
sembly problem efficiently with dynamic programming.

The work of Mori et al. [11] is the most relevant to us,
also using a bottom-up strategy. Their work mainly relies on
sophisticated low-level processing, using Normalized Cuts
to find a few salient body parts. They then solve the as-
sembly problem by brute-force search. Instead, we use a
relatively simple low-level detector, and solve the assign-
ment problem using Integer Quadratic Programming (IQP),
which can systematically explore arbitrary pairwise con-
straints between parts.

3. Our Approach

The ultimate goal of our line of research is to develop
a general method to recover configurations of human bod-

ies, or other articulated objects, from static images. What
characterizes an articulated object is that the object is made
of a collection of simple rigid parts that are constrained un-
der a global configuration. It is self-evident, therefore, that
any approach without explicitly modeling the part structure
would have great difficulties in handling pose variation, ap-
pearance change or background clutter.

There are in general two ways to detect parts of articu-
lated objects: top-down and bottom-up. A typical top-down
approach is to design rectangle-like filters or templates that
model the shape of each object part, and match them to ev-
ery possible location in the image. Such template matching
is useful if one knows a priori the scale and the appearance
of what he looks for. Because we aim at finding people in
a general setting, this would require us to run part detec-
tors at multiple scales, orientations, and aspect ratios (e.g.,
to account for foreshortening). We would find far too many
candidate parts to be efficiently searched and assembled.

Our approach to finding people is to first detect candi-
date body parts from bottom-up, and then search for the
combination of the candidate parts that is most probable for
human bodies. Figure 2 shows an example of how informa-
tion flows through various stages of the process:

Starting with the input image in Figure 2(a), we use the
local Probability of Boundary (Pb) operator [9] to compute
a soft edge map in Figure 2(b). We use Canny’s hystere-
sis to convert the soft edge map into contours, and recur-
sively split them into piecewise straight lines. We then use
constrained Delaunay triangulation (CDT) to complete this
scale-invariant discrete line structure into a triangulation (
Figure 2(c) ) [13].

We model a body part by a pair of parallel lines and build
a discriminative part detector on the basis of the CDT trian-
gulation. For each pair of edges in the triangulation, we
use a logistic classifier to compute its low-level saliency as
a body part. The logistic classifier is trained from 15 im-
ages extracted from a skating sequence performed by Tara
Lipinski with hand-labeled parts.

Figure 2(d) shows the candidate parts detected in this im-
age. Without the knowledge of scale or appearance, our part
detector is fairly weak; there are a lot of false detections.
After all, parallelism is a generic mid-level cue, and body
parts by themselves are not distinctive. It is the configura-
tion of parts that is distinctive for human bodies.

In Section 5 we define a variety of configuration con-
straints between pairs of parts. They go beyond the tradi-
tional tree-based model and incorporate constraints such as
compatibility of part widths, symmetry of appearance, and
smooth connectivity between parts. We learn the pairwise
constraints from the same 15 hand-labeled Lipinski images.

To recover human body configuration is to assign part
labels to detected candidate parts. Assuming that the pair-
wise constraints are independent, these constraints can be
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Figure 2: The processing pipeline: given an input image (a), compute an edge map (b), break this into segments and compute
a constrained Delaunay triangulation (c), identify part candidates by exploiting parallelism of part boundaries(d), find a
good configuration using Integer Quadratic Programming over pairwise constraints between body parts (e), use the labeled
segments and stick figure to find an approximate segmentation of the figure (f).

formulated as an assignment problem with a quadratic cost
function. Hence we can compute the most probable body
configurations by solving an Integer Quadratic Program-
ming (IQP) problem. The IQP problem is solved by us-
ing an efficient linear approximation scheme to IQP [8, 1].
Once we have found the most probably configuration in Fig-
ure 2(e), it is straightforward to find the associated segmen-
tation mask shown in Figure 2(f).

4. Finding Body Parts

We choose to detect candidate body parts from bottom-
up. Our approach is based on the following key observation:
parts of a human body, or of an articulated object in general,
are mostly characterized by a pair of parallel line segments.
Parallelism or Ebenbreite, known from the early days of the
Gestalt movement, is a fundamental and powerful principle
in human vision. It is common understanding that, being a
mid-level cue, the perception of parallelism occurs early in
the visual pathway. Our approach here follows this theory:
first we construct a discrete structure of edges in an image
by grouping them into approximately straight contour ele-
ments. Then we use constrained Delaunay triangulation to
complete the gaps between contour elements. Finally we
train a classifier on a pair of elements to compute the prob-
ability of them forming the boundary of a body part.

4.1. Constrained Delaunay Triangulation

As the first step of our bottom-up processing, we use
the local Pb operator [9] to compute a soft edge map. We
use Canny’s hysteresis trick to trace Pb edges in the image
into continuous contours. We then recursively split these
contours into pieces, until each contour element is approxi-
mately straight. This process gives us a discrete graph, the
elements of which are straight contours of Pb edges. We
note that this discretization is scale-invariant: a straight line,
no matter how long it is, remains a single line in the graph.

We use constrained Delaunay triangulation to complete
gaps between the detected contour elements. The con-
strained Delaunay triangulation (CDT) is a variant of the
standard Delaunay triangulation (DT) in which a set of user-
specified edges must lie in the triangulation. The details of
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Figure 3: (a) Classifying parallel line segments. (b) Top 10
candidate parts detected in one image.

this completion process can be found in [13].
Figure 2(c) shows an example of the CDT triangulation.

The linearized edges extracted from the Pb contours be-
come constrained edges which we refer to as gradient edges
or G-edges (black), and the rest are the completions by the
CDT algorithm, which we refer to as completion edges or
C-edges (green).

4.2. Finding Parallel Line Segments

We detect candidate body parts by finding well-aligned
parallel lines in the CDT graph. Consider a pair of con-
tour elements (Figure 3): let L denote the length of a con-
tour element, α its orientation, �C its center, and Pb the av-
erage contrast on this element. Let �T denote the average
tangent direction and �N the normal direction. We define
the following set of features: (1) orientation consistency
|α1 − α2|; (2) length consistency |L1 − L2|/(L1 + L2);
(3) low-level contrast |Pb1 + Pb2| and |Pb1 − Pb2|; (4)
distance between centers, both in the normal direction
|(�C1 − �C2) · �N |/(L1 + L2) and in the tangent direction
|(�C1 − �C2) · �T |/(L1 + L2); and (5) intervening contour
PbIC , where PbIC is the maximum Pb contrast on edges
intersecting the straight line connecting �C1 to �C2

1.
We train a simple logistic classifier to combine these fea-

tures. For training, we use the hand-labeled body parts in
the Lipinski dataset as positive examples. As negative ex-
amples, we use all pairs of contour elements whose centers
are sufficiently close (<= 5 hops in the CDT graph).

1For simplicity we approximate this straight line by computing the
shortest path between C1 and C2 in the CDT graph.
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Most pairs of lines in the graph are unlikely to be body
parts: either they are not parallel or too far away from each
other. Hence we take a simplifying step that, for each line e
in the CDT graph, we keep only the candidate limb segment
using e with the best low-level score. Figure 3(b) shows the
candidate parts with the top 10 low-level scores (cf Figure 2
showing all of the candidates above threshold). We note
that the candidate parts are very different in scale and as-
pect ratio: given a pair of edges in the CDT graph, scale
and aspect ratio are automatically determined. Therefore in
our bottom-up detection step, there is no need to explicitly
search over all possible scales and aspect ratios. And while
a top-down rectangle detector would fire many times on the
long parallel bars in the background, we only find one can-
didate part which will later be discarded due to its aspect
ratio or because it is not compatible with enough other limb
candidates.

5. Configuration Constraints

Most existing approaches model the human body as a
tree of parts. The typical configuration constraints used in
a tree model are positional and orientation constraints be-
tween adjacent parts, such as torso-upper limb connection,
or upper-lower limb connection. These are, however, only
a subset of the information that is available for recovering
human body configurations.

One important cue missing from the tree model is the
symmetry of clothing: corresponding parts, such as the two
forearms, are usually clothed in the same way and thus sim-
ilar in color. This cue can be very useful in identifying arm
positions. Another example is the connectivity between two
upper legs. They form a stereotypical “V”-shape, which is
typically very salient and heavily exploited by the human
visual system. There are many other useful cues between a
pair of body parts.

5.1. Constraints between Parts

What is a good configuration? Individual parts have to be
consistent with the global configuration. We approximate
the global configuration consistency by defining pairwise
constraints between parts.

Let c be a candidate part (two roughly parallel lines) de-
tected from the image, and l be a part label (e.g., left upper
leg). There are some simple unary constraints on this as-
signment (l, c):

1. aspect ratio faspect(l, c): anthropometric data [12]
provides us constraints on the aspect ratio of each individual
part. Parts can be and often are foreshortened; however,
the aspect ratio length/width can only be smaller, but not
much larger, than the expected aspect ratio;

2. low-level score flowlevel(l, c): for a candidate part
c, we have a measure of the low-level saliency Plowlevel(c)

from the part detector, the posterior from the logistic clas-
sifier. We use flowlevel(l, c) = log(Plowlevel(c)). This fea-
ture is independent of the label l.

The unary constraints are very weak in nature. With-
out knowing the global scale or its relations to other parts,
a candidate part can be labeled as almost anything, e.g., a
torso or a lower leg. More important for recovering con-
figurations are the constraints between parts. We define the
following set of cues between a pair of assignments (l1, c1)
and (l2, c2):

1. scale consistency fscale(l1, c1, l2, c2): body parts are
roughly speaking cylindrical. Although length is unreli-
able because of foreshortening, width is a good estimate of
the global object scale. Let w1 = width(c1) and w2 =
width(c2), compute the ratio r = (w1 − w2)/(w1 + w2);
we compare r to r̃ = (w̃1 − w̃2)/(w̃1 + w̃2), where
w̃1 = width(l1) and w̃2 = width(l2) are the “expected”
widths of these two part labels, as given in anthropometric
statistics. This is invariant to a global change in scale.

2. appearance consistency: the appearance of corre-
sponding parts are similar; this constraint is valid for cer-
tain pairs of parts, e.g., between upper legs and between
lower legs. Let (L,A,B) be the average color of a part,
we compute the difference fL = |L1 − L2| and fab =
|(A1, A2) − (B1, B2)|.

3. orientation consistency forient(l1, c1, l2, c2): let α
be the orientation of a part, we compute the difference
forient = |α1 − α2|. This cue is useful mostly for adja-
cent body parts. Because of the large variations in pose in
the training data, the orientation consistency turns out to be
a weak cue.

4. connectivity: adjacent body parts should be adja-
cent in the image; this is the most commonly used cue in
constraining possible body configurations. However, con-
nectivity means much more. The V-shape constraint be-
tween two upper legs is one example. Another one is the
connectivity cue between an upper arm and an upper leg,
i.e., there is typically a “smooth” contour connecting them
through the torso. We discuss more about how to quantify
this smooth connectivity in the next section.

5.2. Smooth Connections between Parts

To quantify the smoothness of a connection, we compute
the shortest path between two parts in the CDT graph (Fig-
ure 4(a) ), where the path goes through contour elements,
i.e. edges in the CDT graph GCDT , instead of pixels. In
the CDT graph, a path could go through G-edges as well as
C-edges (gaps). We would like to tolerate small gaps but
avoid jumping large distances along C-edges. Therefore,
we raise the cost of traveling along a C-edge by a constant
ratio (3.0).

We can compute a number of connectivity cues for a
pair of edges (a1, a2): dist(a1, a2), the total distance of the
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Figure 4: (a) Defining pairwise connectivity constraints on
parts. (b) Empirical distributions of distance constraints
from training data.

shortest path a1 → a2 (relative to torso width, which we
can estimate from the two parts under consideration given
anthropometric data); gap(a1, a2), the total length of C-
edges or gaps on this path; angle(a1, a2), the maximum
change of angle along the path; and turn(a1, a2), the num-
ber of “turns” or T-junctions along this path (where travel-
ing through a T-junction is counted as a “turn” if it does not
go through the pair of edges that form the minimum angle
at this junction).

Now consider a pair of candidates c1 and c2: each part
has two bounding edges, (a1, b1) and (a2, b2) respectively.
We find a correspondence between these two pairs of edges,
such that dist(a1, a2), the distance between (a1, a2), are the
minimum of all four combinations; and (b1, b2) are the two
other edges. Thus we can define two sets of connectivity
cues between parts, one from the path (a1 → a2) and one
from (b1 → b2). Sometimes both of them are very infor-
mative, such as the connectivity between an upper leg and
the lower leg, as we expect both sides to be well connected.
Sometimes only one of them is useful, such as the connec-
tivity between an upper arm and an upper leg.

5.3. Torso-Limb Constraints

The torso has a special role as the hub that connects all
the limbs together. The constraints that follow are designed
to make the optimization problem somewhat easier.

1. Torso orientation ftorsoorient(c): we assume that the
torso is oriented upward. Let θ be the leaning angle of the
candidate part c, we compute ftorsoorient = |tan(θ)|;

2. Left/right disambiguation: given a torso candidate c
and its two bounding edges a and b, we know which edge is
the left side and which is the right side. When we compute
the connectivity of the left (or right) limbs to the torso, we
only consider the connectivity to the left (or right) side of
the torso.

3. Arm-Leg disambiguation: given the torso orienta-
tion, we assume that the center of upper legs cannot be

higher (along torso orientation) than the top of the torso, and
upper arms cannot be lower than the bottom of the torso.

5.4. Learning the Constraints

We use the 15 hand-labeled images of an ice-skater, Lip-
inski, for training. With such a limited amount of training
data, it would be difficult to learn the interactions between
all the pairwise constraints. Thus, for simplicity, we assume
that the constraints are all independent of each other, and
they have a Gaussian distribution. 15 images are sufficient
for us to estimate the mean and standard deviation from the
empirical data. For some constraints, such as the distance
between upper leg and lower leg, we know it should be zero
in the ideal case. In such cases we fix the mean of this con-
straint to be zero.

Figure 4(b) shows a few empirical distributions of dis-
tance constraints. The distance between two upper legs (the
V-shape) is typically zero or very small. In comparison, the
distance between upper legs and upper arms is less reliable
and has a high variance. The orientation constraint between
torso and upper leg turns out to be weak (in many cases
> 90 degrees), as the ice-skater in the training images goes
through a wide range of poses.

Another observation is that these distributions are clearly
non-Gaussian. We leave it for future work to build better
parametric models for each type of constraint, possibly with
more training data.

5.5. Non-traditional Constraints

We have introduced a number of configuration con-
straints that are not found in the traditional tree-based mod-
els, for example: fab, the symmetry of color between cor-
responding left/right limbs; fdist(V ), the V-shape distance
or the distance between two upper legs; and fgap(UA,UL),
the gap (C-edges on the shortest path) between upper arms
and upper legs. Based on the training images, we attempt
to quantify their usefulness and compare to traditional cues,
such as fdist(L,L), the distance between adjacent limbs, and
fdist(L,T ), the distance between upper legs and torsos.

Let f(l1, c1, l2, c2) be a constraint under study, and let Z
be a binary variable such that Z = 1 iff a random assign-
ment (l1, c1, l2, c2) is good (i.e., in the groundtruth). One
way to quantify the information in f is to measure the rel-
ative information gain I(Z, f)/H(Z), where H(Z) is the
entropy or uncertainty of the label Z and I(Z, f) is the mu-
tual information between Z and f .

Constraint Relative Information
fab 6.1%
fdist(V ) 34.9%
fgap(UA,UL) 10.4%
fdist(L,L) 44.5%
fdist(L,T ) 27.1%
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We find that these non-traditional constraints do contain a
significant amount of information about the configuration,
comparable to the traditional tree-based constraints. Of
course, this is only the marginal information gain; more
important questions would be how much extra information
they provide and how much they help improve the end per-
formance. These are subtle questions and we will try to
address them in future work.

6. Integer Quadratic Programming

Recovering human body configuration in an image can
be formulated as an assignment of body part labels {li} to
candidate body parts {cj}. We use the unary and pairwise
constraints fk introduced in the last section to define the
“goodness” of an assignment. We model each constraint fk

with a Gaussian distribution with parameters (µk, σk). Let
f̄k = (fk − µk)2 /σ2

k. Assuming that all the constraints are
independent results in a product of Gaussians as the proba-
bilistic model. Finding the maximum likelihood assignment
π : {li} → {cj} is then equivalent to minimizing the sum:

∑

l1,l2

∑

k

f̄k (l1, π (l1) , l2, π (l2)) +
∑

l

∑

k

f̄k (l, π(l)) (1)

where li is a part label, and π(li) is the part candidate as-
signed to li by π. The first sum is over pairwise constraints
f̄k’s. For instance one f̄k (l1, π (l1) , l2, π (l2)) might mea-
sure the scale consistency of labeling one part candidate as
a leg and another as a torso 2. The second sum is over
each limb label l where f̄k (l, π(l)) are the unary constraints
(e.g., the low-level saliency score).

Integer Quadratic Programming Minimizing Equa-
tion 1 can be written as an integer quadratic programming
problem (IQP). The assignment π is represented by a binary
vector x. Each entry xi indicates whether one particular part
candidate c(i) is labeled with a particular part label l(i). In
order for x to represent a valid assignment there is a con-
straint that for each part label l̂,

∑
i:l(i)=l̂ xi = 1. We can

now write the integer quadratic programming problem:

min Q(x) =x′Hx + c′x (2)

subject to Ax = b, x ∈ {0, 1}n

here H is a matrix representing the pairwise consistency,

Hi,j =
∑

k

f̄k (l(i), c(i), l(j), c(j))

similarly we have ci = f(l(i), c(i)). Finally Ax = b ex-
presses the constraints that x represents a valid assignment
(as above).

2Note that for some pairs of limbs and features, f̄k will be zero – for
instance f̄k is zero for all k whenever l1 is a lower arm and l2 is a lower
leg, as we do not include such constraints in the model.

The binary vector x that minimizes Equation 2 corre-
sponds to the assignment that minimizes Equation 1 and
therefore has the maximum likelihood under our model.

Linear Bound A linear bounding function L(x) is con-
structed so that L(x) < Q(x) for all x. Note that from this
point forward the constraints from Equation 2 are assumed,
but not written.

qi = min
x

∑

j

H(i, j)xj (3)

If xi indicates assigning limb l(i) to candidate c(i), then
qi + ci is a lower bound for the cost contributed to any
assignment mapping l(i) to c(i). Now we can write the
bounding function, L(x) =

∑
i(qi + ci)xi. Finding the x

that minimizes L and finding the qi in Equation 3 subject to
the constraints in Equation 2 is simple because the vertices
of the constraint polytopes lie only on integer coordinates.
As a result the integer linear programming problems can be
relaxed to linear programming problems without changing
the optima.

This construction follows [8] and [1], and is a standard
bound for a quadratic program.

Greedy Search Starting from the assignment that min-
imizes L we perform a greedy local search considering up
to two changes in the assignment at a time. Considering two
changes is important in order to move both upper and lower
parts of a limb out of a poor configuration.

Complexity Integer quadratic programming can be
quite challenging, it is after all an NP-hard problem; but
it turns out the instances generated as described above are
not so difficult. A simple linear approximation followed by
a greedy local search produces reasonably good results.

There are more complex approximations to IQP, using
semidefinite programming (SDP), with guaranteed bounds
on approximation error [4]. However, in this work a simple
approximation produces results within the approximation
bound and with significantly lower time and space complex-
ity than [4].

If n is the length of x, computing the x that minimizes
L(x) (including computing all of the qi) takes O(n2) opera-
tions with a very small constant. Each gradient descent step
requires approximately the same number of operations. As
a comparison SDP techniques are polynomial in n2, effec-
tively many, many times slower as n ∼ 1300.

7. Experimental Results

We have tested our algorithm on a variety of images, in-
cluding extracted frames from a skating sequence of Michel
Kwan, and other gymnastic images. Examples are shown in
Figure 7, with recovered body configurations and the asso-
ciated segmentation masks.

To obtain these results, we use a standard 9-part model
for the human body, i.e., torso plus left/right upper/lower
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legs/arms. The number of candidate parts detected per im-
age is in the range of 100 ∼ 200. We use the set of Gaussian
parameters learned from a different skating sequence with a
different skater, Lipinksi. Because Gaussian models are not
very accurate for some features, we choose to “cut off” the
features at 4σ; i.e., any cost term above 4σ is considered as
being infinity.

Because of the heterogeneous nature of the constraints,
our IQP problem is hard to solve. We have found that, oc-
casionally, the linear approximation to IQP fails to locate
the correct body parts. The linear approximation step in
Equation 3 basically tries to find for each line (or each pos-
sible labeling) the best consistent assignment. This is done
without considering the pairwise constraints between other
parts. Therefore the linear approximation could fail and the
gradient descent that follows may not be able to correct the
errors.

To remedy this problem, we make use of an empirical ob-
servation: that although torsos typically have poor low-level
saliency, they are the most constrained part of the body and
therefore can be most reliably detected in the linear approx-
imation scheme. We use the following two-step strategy: in
the first step, we run the linear approximation to obtain a
shortlist of 5 best torso candidates. In the second step, we
go through the shortlist, pick one candidate part, fix its la-
bel to be the torso and re-solve the IQP problem, with the
same cost matrix H . Fixing the torso is appealing because it
helps constrain all the upper legs/arms in the configuration.
Finally we pick the solution that has the lowest cost Q.

8. Conclusion

In this work we develop a strategy to use pairwise con-
straints between human body parts to recover body config-
urations from static images. We detect candidate body parts
from bottom-up using parallelism cues to search a discrete
graph structure given by Constrained Delaunay Triangula-
tion. Finding the configuration of a human body is then an
assignment problem: for each body part label, we decide
which candidate part should be assigned to that label. We
formulate the assignment as a Integer Quadratic Program-
ming (IQP) problem.

As compared to the traditional tree-based model and the
associated dynamic programming algorithm, IQP allows us
to incorporate a much richer set of constraints, namely arbi-
trary constraints between pairs of body parts. This includes
the important cues such as the symmetry of clothing, the
canonical V-shape between upper legs, and the smooth con-
tour connectivity between arms and legs. As compared to
a brute-force search approach in [11], we are able to han-
dle a much larger set of candidate parts and do not rely on
the availability of a few being very salient. We have found
that a two-step strategy using the linear approximation of
IQP works well for our assignment problem, produces sat-

isfactory results on a variety of images without relying on
extensive low-level processing, and is computationally effi-
cient. We believe that the IQP formulation will find more
and more use in detecting articulated objects.
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