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Abstract

This paper demonstrates a new visual motion estimation
technique that is able to recover high degree-of-freedom
articulated human body configurations in complex video
sequences.  We introduce the use of a novel mathemati-
ca technique, the product of exponential maps and twist
motions, and its integration into a differential motion esti-
mation. This resultsin solving simple linear systems, and
enables us to recover robustly the kinematic degrees-of-
freedom in noise and complex self occluded configurations.
We demonstrate this on several image sequences of people
doing articulated full body movements, and visuaize the
results in re-animating an artificial 3D human model. We
are also able to recover and re-animate the famous move-
ments of Eadweard Muybridge's motion studies from the
last century. To the best of our knowledge, thisis the first
computer vision based system that is able to process such
challenging footage and recover complex motionswith such
high accuracy.

1 Introduction

The estimati on of image motion without any domain con-
straints is an underconstrained problem. Therefore al pro-
posed motion estimation a gorithmsinvol ve additional con-
straints about the assumed motion structure. One class of
motion estimation techniques are based on parametric al-
gorithms [3]. These techniques rely pm solving a highly
overconstrained system of linear equations. For example,
if an image patch could be modeled as a planar surface, an
affine motion model with low degrees of freedom (6 DOF)
can be estimated. Measurements over many pixel locations
have to comply with thismotion model. Noiseinimagefea
tures and ambiguous motion patterns can be overcome by
measurements from features at other imagelocations. If the
motion can be approximated by this simple motion model,
sub-pixd accuracy can be achieved.

Problems occur if the motion of such a patch is not well
described by theassumed motion model. Othershave shown
how to extend this approach to multipl eindependent moving
motion areas [15, 1, 26]. For each area, this approach till
has the advantage that a large number of measurements are
incorporated into alow DOF linear motion estimation. Prob-
lems occur if some of the areas do not have alarge number
of pixel locationsor have mostly noisy or ambiguousmotion
measurements. One example is the measurement of human
body motion. Each body segment can be approximated by
one rigid moving object. Unfortunately, in standard video

sequences the area of such body segments are very small,
the motion of leg and arm segments is ambiguous in cer-
tain directions (for example paralle to the boundaries), and
deforming clothes cause noisy measurements.

If we increase the ratio between the number of measure-
ments and the degrees of freedom, the motion estimation
will be more robust. This can be done using additional con-
straints. Body segments don’t move independently; they are
attached by body joints. This reduces the number of free
parameters dramatically. A convenient way of describing
these additional domain constraints is the twist and prod-
uct of exponential map formalism for kinematic chains[20].
The motion of one body segment can be described as the
motion of the previous segment in a kinematic chain and an
angular motion around a body joint. Thisadds just asingle
DOF for each additional segment in the chain. In addition,
the exponential map formulation makes it possibleto relate
the image motion vectors linearly to the angular velocity.

Othershavemode ed thehuman body withrigid segments
connected at joints [14, 24, 23, 13, 10, 9, 16, 17], but use
different representations and features (for example Denavit-
Hartenburg and edge detection). The introduction of twists
and product of exponentia maps into region-based motion
estimation simplifies the estimation dramatically and leads
to robust tracking results. Besides tracking, we aso outline
how to fine-tune the kinematic model itself. Here theratio
between the number of measurements and the degrees of
freedom is even larger, because we can optimize over a
compl ete image sequence.

Alternative solutions to tracking of human bodies were
proposed by [27] in tracking color blobs, and by [11] in
using motion templates. Nonrigid models were proposed
by [22, 7,5, 6].

Section 2 introducesthe new motion tracking framework
and its mathematical formulation, section 3 details our ex-
periments, and we discuss the results and future directions
in section 4.

2 Motion Estimation

We first describe acommonly used region-based motion
estimation framework [3, 25], and then describe the exten-
sion to kinematic chain constraints [20].

21 Preiminaries

Assuming that changes in image intensity are only due
to trandation of local image intensity, a parametric image
motion between consecutive time frames¢ and ¢ + 1 can be
described by the following equation:



Iz 4ug(x,y,¢), y+uy(z,y 6),t+1)=I(x,yt) (1)

I(x,y,t) is the image intensity. The motion model
u(z,y, @) = [us(z,y,¢),uy(z,y, ¢)]¥ describes the pixel
displacement dependent on location (z, ) and mode pa-
rameters ¢. For example, a 2D affine motion modd with
parameters ¢ = [ax, az, as, as, d,;, d,]” isdefined as

wevo=[n ][5 [E] e

Thefirst-order Taylor series expansion of (1) leadsto the
commonly used gradient formulation [18]:

Li(z,y) + [Le(z,y), Iy(z,y)] - u(z,y,¢) =0  (3)

Ii(xz,y) is the temporal image gra
dient and [I,(x,y), Iy (x, y)] is the spatia image gradient
at location («, y). Assuming amotion model of X degrees
of freedom (in case of theaffine model KX = 6) and aregion
of N > K pixels, we can write an over-constrained set of
N equations. For the case that the motion model is linear
(asin the affine case), we can write the set of equationsin
matrix form (see [3] for details):

—

H ¢+7=0 4

where H € RV*E and 7 € ®V. The least squares
solutionto (3) is:

6=l H) " H'Z (5)

Because (4) isthefirst-order Taylor serieslinearization of
(1), welinearize around the new solutionand iterate. Thisis
done by warping theimage 7 (¢ + 1) using the motion mode!
parameters¢ found by (5). Based onthere-warpedimagewe
computethenew imagegradients(3). Repeating thisprocess
is equivalent to a Newton-Raphson style minimization.

A convenient representation of the shape of an image
region is a probability mask w(x,yf) €[0,1. w(z,y) =1
declares that pixel (z,y) is part of the region. Equation
(5) can be modified, such that it weights the contribution of
pixel location (x, y) according to w(x, y):

p=a(W B H) (W H'T (6

W isan N x N diagonad matrix, with W(i,i) =
w(w;, yig. We assume for now that we know the exact
shape of the region. For example, if we want to estimate
the motion parameters for a human body part, we supply a
weight matrix W that defines theimage support map of that
specific body part, and runthis estimation techniquefor sev-
eral iterations. Section 2.4 describes how we can estimate
the shape of the support maps as well.

Tracking over multipleframes can be achieved by apply-
ing this optimization technique successively over the com-
plete image sequence.

2.2 Twists and the Product of Exponential For-
mula

Inthefollowing wedevelop amotion mode u(z, v, ¢) for
a 3D kinematic chain under scaled orthographic projection
and show how these domain constraintscan be incorporated
into one linear system similar to (6). ¢ will represent the
3D pose and angle configuration of such a kinematic chain
and can be tracked in the same fashion as aready outlined
for simpler motion models.

221 3D pose

The pose of an object relative to the camera frame can be

represented as a rigid body transformation in 2 using ho-
mogeneous coordinates (wewill usethe notationfrom [20]):

r11 712 113 dp
r21 122 123
r31 732 133

g. =G -q, with G = Y
0 0 0 1

(7)

G0 = [0, Y0, 20, 1] isapoint in the object frame and
ge = [T¢, Ye, z¢, 1]T isthecorresponding pointinthecamera
frame. Using ed orthographic projection with scale s,
thepoaint .. inthe cameraframegetsprojected into theimage
pOI nt [xima ylm]T =S5 [$Ca yc]T'

The 3D trandation [d, dy, d,]" can be arbitrary, but the
rotation matrix:

r11 Ti2 713
r21 122 723
r31 732 733

R = € SO(3) 6)

has only 3 degrees of freedom. Therefore the rigid body
gansformation G € SFE(3) hasatotal of 6 degrees of free-
om.

Our goa is to find a model of the image motion that
is parameterized by 6 degrees of freedom for the 3D rigid
motion and the scale factor s for scaled orthographic pro-
jection. Euler angles are commonly used to constrain the
rotation matrix to SO(3), but they suffer from singularities
and don't lead to a simple formulation in the optimization
procedure (for example [2] proposea 3D dllipsoidal tracker
based on Euler angles). In contrast, the twist representa
tion provides a more elegant solution [20] and leads to a
very ssimple linear representation of the motion model. It
is based on the observation that every rigid motion can be
represented as arotation around a 3D axis and atrandation
along thisaxis. A twist ¢ has two representations. (a) a6D
vector, or (b) a4 x 4 matrix with the upper 3 x 3 component
as a skew-symmetric matrix:

v1
V2 0 “w, w, wu
| v s Wy 0 <«w, v
=l | €= ey w2 0 w| @
Wy 0 0 0 0
W,

w isa 3D unit vector that pointsin the direction of the
rotation axis. The amount of rotation is specified with a



scalar angle 6 that is multiplied by the twist: £6. The v
component determines the location of the rotation axis and
the amount of trandation along this axis. See [20] for a
detailed geometric interpretation. It is convenient to drop
the & coefficient by relaxing the constraint that w is unit
length. Thereforeé € R,

It can be shown [20] that for any arbitrary G € SFE(3)
thereexists a¢ € R twist representation.

A twist can be converted into the G representation with
following exponential map:

r11 T2 113 dg

G= | ™1 722 723 dy
r31 732 133 d;

0 0 0 1

. (A2 £\3
:e5:1+5+%+%+... (10)

2.2.2 Twist motion model

At this point we would like to track the 3D pose of arigid
object under scaled orthographic projection. We will ex-
tend this formulation in the next section to a kinematic
chain representation. The pose of an object is defined as

[Sa E’T]T = [Sa vla UZ, 1)3, wl‘a Wya wz]T' A pOI nt qO In the
object frame is projected to the image location (x;,,, ¥im)
with:

im 1000 :
[Zm ]: [o 10 o]'S'é'qO (11)

Theimage motion of point (x;,,, ¥im) fromtimet totime
t+1lis

[ u, ] _ [ Tim (L + 1) Sxim (1) ]

Yim (t + 1) Syim (1)

with  £(t+ 1)
s(t+1)

£ty +¢
s(t) - (1+5")

Using the first order Taylor expansion from (10) we can
approximate:

(1+5) e m(l+s) I+(1+5)-& (13)
and can rewrite (12) as.

! ! ! !
[“f]:[i Sy T (19)

/
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with
t+1)=w(t)+ ! !
w =w T ¢
(t4+1)=v()+ ! !
v =Y 1+ s v

¢ =[s', vy, v’z,w’x,w;,w;]T codes the relative scale and
twist motionfromtimet tot + 1. Notethat (14) doesnot in-
cludev;. Trandationinthe 7 direction of the camera frame
is not measurable under scaled orthographic projection.

Equation (14) describes the image motion of a point
(z;,y;) in terms of the motion parameters ¢ and the cor-
responding 3D point ¢.(¢) in the camera frame. The 3D
point ¢.(¢) is computed by intersecting the camera ray of
the image point (z;, y;) with the 3D modd. In this paper
we assume that the body segments can be approximated
by elipsoidal 3D blobs. Therefore q. is the solution of a
guadratic equation. This computation has to be done only
once for each new image. It isoutsidethe Newton-Raphson
iterations. It could be replaced by more complex models
and rendering agorithms.

Inserting (14) into (3) leads to:

I+ I - [s' <l wy, 1] - qe + Iy - [, 8", <y, v9] - e = 0

& L) + H; - [s, 07, vh,wlh, !, W' ]T =0 (15)

) Yy 2

with I i= Li(zs, vi), Lo = Lo(2i, 4:), Iy i= Iy (23, ui)

For V pixel positionswe have NV equations of the form
(15). This can bewritten in matrix form:

H ¢+7=0 (16)
with
Hy It(21,41)
H= | 2 ad = | l(z292)
Hy Lz, yv)

Finding the least-squares solution (3D twist motion ¢)
for thisequation is done using (6).

2.2.3 Kinematic chain asa Product of Exponentials

So far we have parameterized the 3D pose and motion of a
body segment by the 6 parameters of atwist £. Pointsonthis
body segment in a canonical object frame are transformed

into acameraframe by the mapping G, = ¢¢. Assumethat
a second body segment is attached to tRe first segment with
ajoint. The joint can be defined by an axis of rotation in
the object frame. We define this rotation axis in the object
frame by a 3D unit vector w; aong the axis, and a point ¢1
on the axis (figure 1). Thisis a revolute joint, and can be
modeled by atwist (|20]):

&= [ ‘:’“1”1] (17)

w1



,Body Frame

Figure 1: Kinematic chain defined by twists

A rotation of angle ¢, around thisaxis can be written as.

g = & (18)
(19)

The globa mapping from object frame points on the first
body segment into the camera frame is described by the
following product:

g(0) = Gg- ™ (20)
qe = g(gl) “qo

If we have a chain of K + 1 segments linked with K
joints (kinematic chain) and describe each joint by atwist
&g, apoint on segment k is mapped from the object frame
into the camera frame dependent on G and angles 61, 6,
ey B

g1 (01,0, ..,04) = Gg - Er0 e Gtk (07

Thisiscalled the product of exponential mapsfor kine-
matic chains.

Thevelocity of asegment % can be described with atwist
Vi that isalinear combination of twistséf, &5, ..., &, and the

angular velocitiesdy, 05, ..., 0, (see[20] for thederivations):

gl/c = Adeélol.m.eﬁk‘—lek—lgk
Ad, isthe adjoint transformation associated with .2
Given a point q. on the k£'th segment of a kinematic

chain, itsmotion vector intheimageisrelated to theangular
velocities by:

_[ R PR _[ R »p
lAdg—[O R }'a”dg—{ooo 1}

. 1000 |y 4,8 ; I
[Ey]:[o 10 0:|'{€1‘91+€/2'92+...+€;/€'9k e
(23)
Recall (15) relates the image motion of a point ¢. to

changesin pose Go. We combine (15) and (23) to relate the
image motion to the combined vector of pose change and

angular change® = [s', vy, vh, W, wy, Wi, 61, 62, ..., ox]":

I + H; - [5,v], vh,wh, w! w']T + J; - [él, ég, HK]T =0

My Yz

(24
[H’J].q3—|—5:0 (25)
with
J1
J= JZ and H, 7 as before
JIn
Ji = [Ji1, Jiz, ooy Jik])
1 000 2
[ b 10 1 0 0] 64
Jir =

0 if pixel 7 ison asegment that
isnot affected by joint &

Theleast squares solutionto (25) is:

o=l I HI) LB (26)

@ is the new estimate of the pose and angular change
between two consecutive images. As outlined earlier, this
solution is based on the assumption that the local image
intensity variations can be approximated by the first-order
Taylor expansion (3). We linearize around thisnew solution
anditerate. Thisisdoneinwarpingtheimage /(¢ + 1) using
the solution @. Based on the re-warped image we compute
the new image gradients. Repeating thisprocess of warping
and solving (26) is equivaent to a Newton-Raphson style
minimization.

2.3 Multiple Camera Views

In cases where we have access to multiple synchronized
cameras, we can couple the different views in one equation
system. Let’'s assume we have C' different camera views at
the same time. View ¢ corresponds to following equation
system (from (25)):

Q.
?1
[He, Jel - | 62 | +2c=0 (27)
b
Q. = [st, V], V)W oWy o, T describes the pose

seen from view ¢. All views share the same angular pa-
rameters, because the cameras are triggered at the same



time. We can simply combine al C' equation systems into
one large equation system:

ST
Q
H]_ 0 0 J]_ Q Z_i
0 Ho .. O Jo eC 2 | _
S D e | T =0
0 0 HC JC ¢2 Z_é
| o
(28)

Operating with multipleviewshasthree main advantages.
The estimation of the angular parametersis more robust be-
cause (1) the number of measurements and therefore the
number of equations increases with the number of views,
(2) some angular configurationsmight be close to asingular
poseinoneview, whereas they can be estimated in aorthog-
ona view much better. (3) With more camera views, the
chance decreases that onebody part isoccludedinal views.

2.4 Adaptive Support Maps using EM

As in (3), the update can be constrained to estimate the
motiononly inaweighted support map W, for each segment
k using:

-1

® = (W [HI)7 - [HI]) " (W, - [H, J])T( §9)

We approximate the shape of the body segments as ellip-
soids, and can compute the support map as the projection of
the elipsoids into the image. Such a support map usualy
covers a larger region, including pixes from the environ-
ment. That distractsthe exact motion measurement. Robust
statisticswould be one solutionto thisproblem [4]. Another
solutionis an EM-based layered representation [12, 15]. It
is beyond the scope of this paper to describe this method
in detail, but we would like to outline the method briefly:
We start with aninitial guess of the support map (ellipsoidal
projection in this case). Given theinitial W, we compute
the motion estimate @ (M-step). Given such a @ we can
compute for each pixe location the probability that it com-
plies with the motion model defined by ®. We do this for
each blob and the background (dominant motion) and nor-
malize the sum of al probabilities per pixel location to 1.
This resultsin new W, maps that are better “tuned” to the
real shape of the body segment. In this paper we repeat the
EM iteration only once.

25 Tracking Recipe

We summarize the algorithm for tracking the pose and
angles of akinematic chain in an image sequence:

o Input:  I(t),I(t + 1),GCo(t), 61(t), 02(1), ..., 0k (t)
(Two i mages and t he pose and angl es
for the first inmage).

e Output:  Go(t+1),01(t+1),0(t+1),...., 0 +
1).

(Pose and angl es for second image).

1. Conpute for each image | ocation
(z;,y;) in I(t) the 3D point ¢.(:) (using
el 1 psoids or nore conpl ex nodel s
and rendering algorithm.

2. Conmpute for each body segnent the
support map W;.

3. Set Go(t+1):=Go(t), Vk:0k(t+1) :=0,().
4, lterate:

(a) Conpute spatiotenporal inage
gradients: I, I I,.

(b) Estinmate @ using (29)

(c) Update Go(t+1):= Go(t+1)-(14s) em
(d) Vk Update 64(t+1) =04t + 1) + 0.

(e) Yk Warp
the region inside W, of I(t+1) by

Go(t +1) - gilt +1) - (GU) - g (1)~

2.6 Initialization

The visud tracking isbased on an initialized first frame.
We have to know theinitia poseand theinitia angular con-
figuration. If more than one view isavailable, al views for
thefirst time step have to be known. A user clicksonthe2D
joint locationsin al views at thefirst time step. Given that,
the 3D pose and theimage proj ection of the matching angu-
lar configuration isfound by minimizing the sum of squared
differences between the projected model joint locations and
the user supplied modd joint locations. The optimization
is done over the poses, angles, and body dimensions. Ex-
ample body dimensions are “ upper-leg-length”, “lower-leg-
length”, or “shoulder-width”. The dimensions and angles
have to be the same in dl views, but the pose can be dif-
ferent. Symmetry congtraints, that the left and right body
lengthsare the same, are enforced aswell. Minimizing only
over angles, or only over model dimensionsresultsin linear
equations similar to what we have shown so far. Unfortu-
nately the global minimization criteriaover all parametersis
atri-linear equation system, that cannot be easily solved by
simple matrix inversions. There are several possible tech-
niques for minimizing such functions. We achieved good
results with a Quasi-Newton method and a mixed quadratic
and cubic line search procedure.

2.7 Mode Fine Tuing

Thesupplied hand labd sinthefirst frameshoul d coincide
with thelocation of the joints. We can roughly guess where
the joints are, but still don’t know exactly the underlying
bone structure and their kinematics. We are able to extend
the state space of our motion tracking framework, such that
we aso optimize over the kinematic model, and over the
complete image sequence, instead of an image pair. Dueto
space limitations the details of the extended algorithm are
described in the accompanying technical report [8].

3 Reaults

We applied this technique to video recordingsin our lab
and to photo-plate sequences of Eadweard Muybdrige' smo-
tion studies[21].



Figure2: Exampleconfigurationsof theestimated kinematic
structure. First image shows the support maps of theinitial
configuration. In subsequent images the white lines show
blob axes. The joint is the position on the intersection of
two axes.

Figure 3: Comparison of @) datafrom [Murray et a] (left)
and b) our motion tracker (right).

3.1 Singlecamerarecordings

Our lab video recordings were done with a single cam-
era. Therefore the 3D pose and some parts of the body can
not be estimated completely. Figure 2 shows one example
sequences of aperson walking in afrontoparalld plane. We
defined a6 DOF kinematic structure: One blob for the body
trunk, threeblobsfor thefrontal leg and foot, connected with
ahipjoint, kneejoint, and ankle joint, and two blobsfor the
arm connected with a shoulder and elbow joint. All joints
have an axis orientation pardlel to the Z-axisin the camera
frame. The head blob was connected with one joint to the
body trunk. Thefirstimageinfigure 2 showstheinitia blob
support maps.

After the hand-initiaization we applied the motion
tracker to a sequence of 53 image frames. We could suc-
cessfully track al body parts in this video sequence (see
web-page). The video shows that the appearance of the
upper leg changes significantly due to moving folds on the
subject’sjeans. The lower leg appearance does not change
to the same extent. The constraints were able to enforce
compatible motion vectors for the upper leg, based on more
reliable measurements on the lower leg.

We can compare the estimated angular configurations
with motion capture data reported in the literature. Murray,
Brought, and Kory published [19] such measurements for
the hip, knee, and angle joints. We compared our motion
tracker measurements with the published curves and found
good agreement. Figure 3.1a showsthe curves for the knee
and ankle reported in [19], and figure 3.1b shows our mea-
surements.

We al so experimented with awalking sequence of a sub-
ject seen from an oblique view with a similar kinematic
model. Asseeninfigure 4, we tracked the angular configu-
rationsand the pose successfully over the compl ete sequence
of 45 image frames. Because we use a scaled orthographic
projectionmodel, the perspective effects of the person walk-
ing closer to the camera had to be compensated by different
scales. The tracking algorithm could successfully estimate

Figure5: Eadweard Muybridge, The Human Figurein Mo-
tion, Plate 97: Woman Walking. The first 3 frames show
part of awalk cycle from one example view, and the second
3 frames show the same time steps from a different view

the scale changes.
3.2 Digital Muybridge

Thefinal set of experimentswas done on historic footage
recorded by Eadweard Muybridge in 1884 [21]. His meth-
ods are of independent interest, as they predate motion pic-
tures. Muybridge had his models wak in an open shed.
Paralld to the shed was a fixed battery of 24 cameras. Two
portable batteries of 12 cameras each were positioned at
both ends of the shed, either at an angle of 90 deg relative
to the shed or an angle of 60 deg. Three photographswere
take simultaneously, one from each battery. The effective
‘framerate’ of his technique is about two times lower then
current video frame rates; a fact which makes tracking a
harder problem.. It isto our advantage that he took for each
time step three pictures from different viewpoints.

Figure 3.2 and figure 3.2 shows exampl e photo plates. We
could initialize the 3D pose by labeling al three views of
thefirst frame and running the minimization procedure over
the body dimensions and poses. Every body segment was
visiblein at least one of the three camera views, therefore
we could track the left and the right side of the person. We
applied this technique to a walking woman and a walking
man. For thewalkingwoman we had 10time stepsavailable
that contained 60 % of a full walk cycle (figure 3.2). For
this set of experiments we extended our kinematic model
to 19 DOFs. The two hip joints, the two shoulder joints,
and the neck joint, were modeled by 3 DOFs. The two
knee jointsand two elbow joints were modeled just by one
rotation axis. Figure 3.2 shows the tracking results with the
model overlayed. Asyou see, we could successfully track
the complete sequence. To animate the tracking results
we mirrored the left and right side angles to produce the
remaining frames of a complete wak cycle. We animated
the 3D motion capture data with a stick figure model and a
volumetric model (figure 9), and it looks very natural. The
video shows some of the tracking and animation sequences
from several novel cameraviews, replicating thewalk cycle
performed over a century ago on the grounds of University
of Pennsylvania.

For thevisualization of thewal king man sequence, wedid
not apply the mirroring, because he was carrying a boulder
on his shoulder. This made the walk asymmetric. We re-
animated the original tracked motion (figure 3.2) capture
datafor the man, and it also looked very natural.

4 Conclusion
In this paper, we have developed and demonstrated a
new technique for articulated visual motion tracking. We



Figure 4: Example configurations of the estimated kinematic structure of a person seen from an oblique view.

Figure 6: Eadweard Muybridge, The Human Figurein Mo-
tion, Plate 7: Man walking and carrying 75-LB boulder on
shoulder. Thefirst 3 frames show part of awalk cycle from
one example view, and the second 3 frames show the same
time steps from a different view

Figure 8: Muybridge’'s Man Walking: Motion Capture re-
sults. This showsthe tracked angular configurationsand its
volumetric model projected to 2 example views.

Figure 7: Muybridge's Woman Walking: Motion Capture

results. This shows the tracked angular configurations and

its volumetric model projected to 2 example views. Figure 9: Computer models used for the animation of the
Muybridge motion capture. Please check out the web-page
to see the quality of the animation.



demonstrated results on video recordings of people waking
both in frontoparallel and oblique views, as well as on the
classic Muybridge photographic sequences recorded more
than a century ago.

Visualy tracking human motion at thelevel of individual
jointsisavery challenging problem. Our results are due, in
large measure, to the introduction of a novel mathematical
technique, the product of exponential maps and twist mo-
tions, and itsintegrationinto adifferential motion estimation
scheme. The advantage of this particular formulationisthat
it results in the equations that need to be solved to update
the kinematic chain parameters from frame to frame being
linear, and that it isnot necessary to solve for any redundant
or unnecessary variables.

Future work will concentrate on dealing with very large
motions, as may happen, for instance, in videotapes of high
speed running. The approach developed in this paper is a
differentia method, and therefore may be expected to fail
when the motion from frame-to-frame is very large. We
propose to augment the technique by the use of an initial
coarse search stage. Given a close enough starting value,
the differential method will converge correctly.
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