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Abstract
This paper demonstrates a new visual motion estimation

technique that is able to recover high degree-of-freedom
articulated human body configurations in complex video
sequences. We introduce the use of a novel mathemati-
cal technique, the product of exponential maps and twist
motions, and its integration into a differential motion esti-
mation. This results in solving simple linear systems, and
enables us to recover robustly the kinematic degrees-of-
freedom in noise and complex self occluded configurations.
We demonstrate this on several image sequences of people
doing articulated full body movements, and visualize the
results in re-animating an artificial 3D human model. We
are also able to recover and re-animate the famous move-
ments of Eadweard Muybridge’s motion studies from the
last century. To the best of our knowledge, this is the first
computer vision based system that is able to process such
challenging footage and recover complex motions with such
high accuracy.

1 Introduction
The estimation of image motion without any domain con-

straints is an underconstrained problem. Therefore all pro-
posed motion estimation algorithms involve additional con-
straints about the assumed motion structure. One class of
motion estimation techniques are based on parametric al-
gorithms [3]. These techniques rely pm solving a highly
overconstrained system of linear equations. For example,
if an image patch could be modeled as a planar surface, an
affine motion model with low degrees of freedom (6 DOF)
can be estimated. Measurements over many pixel locations
have to comply with this motion model. Noise in image fea-
tures and ambiguous motion patterns can be overcome by
measurements from features at other image locations. If the
motion can be approximated by this simple motion model,
sub-pixel accuracy can be achieved.

Problems occur if the motion of such a patch is not well
described by the assumed motion model. Others have shown
how to extend this approach to multiple independent moving
motion areas [15, 1, 26]. For each area, this approach still
has the advantage that a large number of measurements are
incorporated into a low DOF linear motion estimation. Prob-
lems occur if some of the areas do not have a large number
of pixel locations or have mostly noisy or ambiguous motion
measurements. One example is the measurement of human
body motion. Each body segment can be approximated by
one rigid moving object. Unfortunately, in standard video

sequences the area of such body segments are very small,
the motion of leg and arm segments is ambiguous in cer-
tain directions (for example parallel to the boundaries), and
deforming clothes cause noisy measurements.

If we increase the ratio between the number of measure-
ments and the degrees of freedom, the motion estimation
will be more robust. This can be done using additional con-
straints. Body segments don’t move independently; they are
attached by body joints. This reduces the number of free
parameters dramatically. A convenient way of describing
these additional domain constraints is the twist and prod-
uct of exponential map formalism for kinematic chains [20].
The motion of one body segment can be described as the
motion of the previous segment in a kinematic chain and an
angular motion around a body joint. This adds just a single
DOF for each additional segment in the chain. In addition,
the exponential map formulation makes it possible to relate
the image motion vectors linearly to the angular velocity.

Others have modeled the human body with rigid segments
connected at joints [14, 24, 23, 13, 10, 9, 16, 17], but use
different representations and features (for example Denavit-
Hartenburg and edge detection). The introduction of twists
and product of exponential maps into region-based motion
estimation simplifies the estimation dramatically and leads
to robust tracking results. Besides tracking, we also outline
how to fine-tune the kinematic model itself. Here the ratio
between the number of measurements and the degrees of
freedom is even larger, because we can optimize over a
complete image sequence.

Alternative solutions to tracking of human bodies were
proposed by [27] in tracking color blobs, and by [11] in
using motion templates. Nonrigid models were proposed
by [22, 7, 5, 6].

Section 2 introduces the new motion tracking framework
and its mathematical formulation, section 3 details our ex-
periments, and we discuss the results and future directions
in section 4.

2 Motion Estimation
We first describe a commonly used region-based motion

estimation framework [3, 25], and then describe the exten-
sion to kinematic chain constraints [20].
2.1 Preliminaries

Assuming that changes in image intensity are only due
to translation of local image intensity, a parametric image
motion between consecutive time frames t and t+ 1 can be
described by the following equation:



I(x+ux(x; y; �); y+uy(x; y; �); t+ 1) = I(x; y; t) (1)

I(x; y; t) is the image intensity. The motion model
u(x; y; �) = [ux(x; y; �);uy(x; y; �)]T describes the pixel
displacement dependent on location (x; y) and model pa-
rameters �. For example, a 2D affine motion model with
parameters � = [a1; a2; a3; a4; dx; dy]

T is defined as

u(x; y; �) =
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(2)

The first-order Taylor series expansion of (1) leads to the
commonly used gradient formulation [18]:

It(x; y) + [Ix(x; y); Iy(x; y)] � u(x; y; �) = 0 (3)

It(x; y) is the temporal image gra-
dient and [Ix(x; y); Iy(x; y)] is the spatial image gradient
at location (x; y). Assuming a motion model of K degrees
of freedom (in case of the affine model K = 6) and a region
of N > K pixels, we can write an over-constrained set of
N equations. For the case that the motion model is linear
(as in the affine case), we can write the set of equations in
matrix form (see [3] for details):

H � �+ ~z = ~0 (4)

where H 2 <N�K , and ~z 2 <N . The least squares
solution to (3) is:

� = �
�
HT

�H
��1

�HT~z (5)

Because (4) is the first-order Taylor series linearization of
(1), we linearize around the new solution and iterate. This is
done by warping the image I(t+1) using the motion model
parameters� found by (5). Based on the re-warped image we
compute the new image gradients (3). Repeating this process
is equivalent to a Newton-Raphson style minimization.

A convenient representation of the shape of an image
region is a probability mask w(x; y) 2 [0; 1]. w(x; y) = 1
declares that pixel (x; y) is part of the region. Equation
(5) can be modified, such that it weights the contribution of
pixel location (x; y) according to w(x; y):

� = �
�
(W �H)T �H

��1
� (W �H)T~z (6)

W is an N � N diagonal matrix, with W(i; i) =
w(xi; yi). We assume for now that we know the exact
shape of the region. For example, if we want to estimate
the motion parameters for a human body part, we supply a
weight matrixW that defines the image support map of that
specific body part, and run this estimation technique for sev-
eral iterations. Section 2.4 describes how we can estimate
the shape of the support maps as well.

Tracking over multiple frames can be achieved by apply-
ing this optimization technique successively over the com-
plete image sequence.

2.2 Twists and the Product of Exponential For-
mula

In the following we develop a motion modelu(x; y; �) for
a 3D kinematic chain under scaled orthographic projection
and show how these domain constraints can be incorporated
into one linear system similar to (6). � will represent the
3D pose and angle configuration of such a kinematic chain
and can be tracked in the same fashion as already outlined
for simpler motion models.

2.2.1 3D pose

The pose of an object relative to the camera frame can be
represented as a rigid body transformation in <3 using ho-
mogeneous coordinates (we will use the notation from [20]):

qc = G � qo with G =

2
64

r1;1 r1;2 r1;3 dx
r2;1 r2;2 r2;3 dy
r3;1 r3;2 r3;3 dz
0 0 0 1

3
75 (7)

qo = [xo; yo; zo; 1]T is a point in the object frame and
qc = [xc; yc; zc; 1]T is the corresponding point in the camera
frame. Using scaled orthographic projection with scale s,
the point qc in the camera frame gets projected into the image
point [xim; yim]T = s � [xc; yc]T .

The 3D translation [dx; dy; dz]T can be arbitrary, but the
rotation matrix:

R =

"
r1;1 r1;2 r1;3
r2;1 r2;2 r2;3
r3;1 r3;2 r3;3

#
2 SO(3) (8)

has only 3 degrees of freedom. Therefore the rigid body
transformationG 2 SE(3) has a total of 6 degrees of free-
dom.

Our goal is to find a model of the image motion that
is parameterized by 6 degrees of freedom for the 3D rigid
motion and the scale factor s for scaled orthographic pro-
jection. Euler angles are commonly used to constrain the
rotation matrix to SO(3), but they suffer from singularities
and don’t lead to a simple formulation in the optimization
procedure (for example [2] propose a 3D ellipsoidal tracker
based on Euler angles). In contrast, the twist representa-
tion provides a more elegant solution [20] and leads to a
very simple linear representation of the motion model. It
is based on the observation that every rigid motion can be
represented as a rotation around a 3D axis and a translation
along this axis. A twist � has two representations: (a) a 6D
vector, or (b) a 4�4 matrix with the upper 3�3 component
as a skew-symmetric matrix:

� =

2
66664

v1
v2
v3
!x
!y
!z

3
77775 or �̂ =

2
64

0 �!z !y v1
!z 0 �!x v2
�!y !x 0 v3

0 0 0 0

3
75 (9)

! is a 3D unit vector that points in the direction of the
rotation axis. The amount of rotation is specified with a



scalar angle � that is multiplied by the twist: ��. The v
component determines the location of the rotation axis and
the amount of translation along this axis. See [20] for a
detailed geometric interpretation. It is convenient to drop
the � coefficient by relaxing the constraint that ! is unit
length. Therefore � 2 <6.

It can be shown [20] that for any arbitrary G 2 SE(3)
there exists a � 2 <6 twist representation.

A twist can be converted into the G representation with
following exponential map:

G =

2
64

r1;1 r1;2 r1;3 dx
r2;1 r2;2 r2;3 dy
r3;1 r3;2 r3;3 dz
0 0 0 1

3
75

= e�̂ = I+ �̂ +
(�̂)2

2!
+

(�̂)3

3!
+ ::: (10)

2.2.2 Twist motion model

At this point we would like to track the 3D pose of a rigid
object under scaled orthographic projection. We will ex-
tend this formulation in the next section to a kinematic
chain representation. The pose of an object is defined as
[s; �T ]T = [s; v1; v2; v3; !x; !y; !z]

T . A point qo in the
object frame is projected to the image location (xim; yim)
with: �

xim
yim

�
=

�
1 0 0 0
0 1 0 0

�
� s � e�̂ � qo (11)

The image motion of point (xim; yim) from time t to time
t+ 1 is:

�
ux
uy

�
=

�
xim(t+ 1)� xim(t)
yim(t+ 1)� yim(t)

�

=
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0 1 0 0

�
�

�
s(t + 1) � e�̂(t+1)

� qo � s(t) � e�̂(t) � qo
�

=

�
1 0 0 0
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�
�

�
(1 + s0) � e�̂

0

� I
�
� s(t)qc (12)

with �̂(t+ 1) = �̂(t) + �̂0

s(t + 1) = s(t) � (1 + s0)

Using the first order Taylor expansion from (10) we can
approximate:

(1 + s0) � e�̂ � (1 + s0) � I + (1 + s0) � �̂ (13)

and can rewrite (12) as:�
ux
uy

�
=

�
s0 �!0z !0y v01
!0z s0 �!0x v02

�
� qc (14)

with

!(t+ 1) = !(t) +
1

1 + s0
� !0

v(t + 1) = v(t) +
1

1 + s0
� v0

� = [s0; v01; v
0

2; !
0

x; !
0

y; !
0

z]
T codes the relative scale and

twist motion from time t to t+1. Note that (14) does not in-
clude v03. Translation in the Z direction of the camera frame
is not measurable under scaled orthographic projection.

Equation (14) describes the image motion of a point
(xi; yi) in terms of the motion parameters � and the cor-
responding 3D point qc(i) in the camera frame. The 3D
point qc(i) is computed by intersecting the camera ray of
the image point (xi; yi) with the 3D model. In this paper
we assume that the body segments can be approximated
by ellipsoidal 3D blobs. Therefore qc is the solution of a
quadratic equation. This computation has to be done only
once for each new image. It is outside the Newton-Raphson
iterations. It could be replaced by more complex models
and rendering algorithms.

Inserting (14) into (3) leads to:

It + Ix � [s
0;�!0z; !

0

y; v
0

1] � qc + Iy � [!
0

z; s
0;�!0x; v

0

2] � qc = 0

, It(i) +Hi � [s; v
0

1; v
0

2; !
0

x; !
0

y; !
0

z]
T = 0 (15)

with It := It(xi; yi); Ix := Ix(xi; yi); Iy := Iy(xi; yi)

For N pixel positions we have N equations of the form
(15). This can be written in matrix form:

H � �+ ~z = 0 (16)

with

H =

2
64

H1
H2
:::
HN

3
75 and ~z =

2
64

It(x1; y1)
It(x2; y2)

:::
It(xN ; yN )

3
75

Finding the least-squares solution (3D twist motion �)
for this equation is done using (6).

2.2.3 Kinematic chain as a Product of Exponentials

So far we have parameterized the 3D pose and motion of a
body segment by the 6 parameters of a twist �. Points on this
body segment in a canonical object frame are transformed
into a camera frame by the mappingG0 = e�̂. Assume that
a second body segment is attached to the first segment with
a joint. The joint can be defined by an axis of rotation in
the object frame. We define this rotation axis in the object
frame by a 3D unit vector !1 along the axis, and a point q1
on the axis (figure 1). This is a revolute joint, and can be
modeled by a twist ([20]):

�1 =

�
�!1 � q1

!1

�
(17)
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Figure 1: Kinematic chain defined by twists

A rotation of angle �1 around this axis can be written as:

g1 = e�̂1��1 (18)
(19)

The global mapping from object frame points on the first
body segment into the camera frame is described by the
following product:

g(�1) = G0 � e
�̂1��1 (20)

qc = g(�1) � qo

If we have a chain of K + 1 segments linked with K
joints (kinematic chain) and describe each joint by a twist
�k, a point on segment k is mapped from the object frame
into the camera frame dependent on G0 and angles �1, �2,
..., �k:

gk(�1; �2; :::; �k) = G0 � e
�̂1��1 � e�̂2��2 � ::: � e�̂k��k (21)

This is called the product of exponential maps for kine-
matic chains.

The velocity of a segment k can be described with a twist
Vk that is a linear combination of twists �01; �

0

2; :::; �
0

k and the
angular velocities �̇1; �̇2; :::; �̇k (see [20] for the derivations):

Vk = �01 � �̇1 + �02 � �̇2 + :::�0k � �̇k (22)

�0k = Ad
e�̂1�1 �:::�e

ˆ�k�1�k�1
�k

Adg is the adjoint transformation associated with g.1
Given a point qc on the k’th segment of a kinematic

chain, its motion vector in the image is related to the angular
velocities by:

1Adg =

h
R p̂ �R

0 R

i
, and g =

h
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000 1
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h
�̂01 � �̇1 + �̂02 � �̇2 + :::+ �̂0k � �̇k

i
�qc

(23)
Recall (15) relates the image motion of a point qc to

changes in poseG0. We combine (15) and (23) to relate the
image motion to the combined vector of pose change and
angular change Φ = [s0; v01; v

0

2; !
0

x; !
0

y; !
0

z; �̇1; �̇2; :::; �̇K]T :

It +Hi � [s; v
0

1; v
0

2; !
0

x; !
0

y; !
0

z]
T + Ji � [�̇1; �̇2; :::�̇K]T = 0

(24)
[H;J] �Φ + ~z = 0 (25)

with

J =

2
64

J1
J2
:::
JN

3
75 and H; ~z as before

Ji = [Ji1; Ji2; :::; JiK]

Jik =

8><
>:

[Ix; Iy] �

�
1 0 0 0
0 1 0 0

�
� �̂k � qc

0 if pixel i is on a segment that
is not affected by joint �k

The least squares solution to (25) is:

Φ = �([H;J]T � [H;J])�1
� [H;J]T � ~z (26)

Φ is the new estimate of the pose and angular change
between two consecutive images. As outlined earlier, this
solution is based on the assumption that the local image
intensity variations can be approximated by the first-order
Taylor expansion (3). We linearize around this new solution
and iterate. This is done in warping the image I(t+1) using
the solution Φ. Based on the re-warped image we compute
the new image gradients. Repeating this process of warping
and solving (26) is equivalent to a Newton-Raphson style
minimization.
2.3 Multiple Camera Views

In cases where we have access to multiple synchronized
cameras, we can couple the different views in one equation
system. Let’s assume we have C different camera views at
the same time. View c corresponds to following equation
system (from (25)):

[Hc;Jc] �

2
6664

Ωc

�̇1

�̇2
:::

�̇K

3
7775+ ~zc = 0 (27)

Ωc = [s0c; v
0

1;c; v
0

2;c; !
0

x;c; !
0

y;c; !
0

z;c]
T describes the pose

seen from view c. All views share the same angular pa-
rameters, because the cameras are triggered at the same



time. We can simply combine all C equation systems into
one large equation system:

2
64
H1 0 ::: 0 J1
0 H2 ::: 0 J2
::: ::: ::: ::: :::
0 0 ::: HC JC

3
75�

2
666666664

Ω1
Ω2
:::

ΩC

�̇1

�̇2
:::

�̇K

3
777777775
+

2
64

~z1
~z2
:::
~zC

3
75 = 0

(28)
Operating with multiple views has three main advantages.

The estimation of the angular parameters is more robust be-
cause (1) the number of measurements and therefore the
number of equations increases with the number of views,
(2) some angular configurations might be close to a singular
pose in one view, whereas they can be estimated in a orthog-
onal view much better. (3) With more camera views, the
chance decreases that one body part is occluded in all views.
2.4 Adaptive Support Maps using EM

As in (3), the update can be constrained to estimate the
motion only in a weighted support mapWk for each segment
k using:

Φ = �
�
(Wk � [H;J])T � [H;J]

��1
� (Wk � [H;J])T~z

(29)
We approximate the shape of the body segments as ellip-

soids, and can compute the support map as the projection of
the ellipsoids into the image. Such a support map usually
covers a larger region, including pixels from the environ-
ment. That distracts the exact motion measurement. Robust
statistics would be one solution to this problem [4]. Another
solution is an EM-based layered representation [12, 15]. It
is beyond the scope of this paper to describe this method
in detail, but we would like to outline the method briefly:
We start with an initial guess of the support map (ellipsoidal
projection in this case). Given the initial Wk, we compute
the motion estimate Φ (M-step). Given such a Φ we can
compute for each pixel location the probability that it com-
plies with the motion model defined by Φ. We do this for
each blob and the background (dominant motion) and nor-
malize the sum of all probabilities per pixel location to 1.
This results in new Wk maps that are better “tuned” to the
real shape of the body segment. In this paper we repeat the
EM iteration only once.
2.5 Tracking Recipe

We summarize the algorithm for tracking the pose and
angles of a kinematic chain in an image sequence:

� Input: I(t); I(t + 1);G0(t); �1(t); �2(t); :::; �K(t)

(Two images and the pose and angles
for the first image).

� Output: G0(t + 1); �1(t+ 1); �2(t + 1); :::; �K(t +
1).
(Pose and angles for second image).

1. Compute for each image location
(xi; yi) in I(t) the 3D point qc(i) (using
ellipsoids or more complex models
and rendering algorithm).

2. Compute for each body segment the
support map Wk.

3. Set G0(t + 1) := G0(t), 8k : �k(t + 1) := �k(t).

4. Iterate:

(a) Compute spatiotemporal image
gradients: It; Ix; Iy.

(b) Estimate Φ using (29)

(c) Update G0(t+1) := G0(t+1) �(1+s0) �e
�̂0

1+s0

(d) 8k Update �k(t + 1) := �k(t+ 1) + �̇k.

(e) 8k Warp
the region inside Wk of I(t+1) by
G0(t+ 1) � gk(t+ 1) � (G(t) � gk(t))�1.

2.6 Initialization
The visual tracking is based on an initialized first frame.

We have to know the initial pose and the initial angular con-
figuration. If more than one view is available, all views for
the first time step have to be known. A user clicks on the 2D
joint locations in all views at the first time step. Given that,
the 3D pose and the image projection of the matching angu-
lar configuration is found by minimizing the sum of squared
differences between the projected model joint locations and
the user supplied model joint locations. The optimization
is done over the poses, angles, and body dimensions. Ex-
ample body dimensions are “upper-leg-length”, “lower-leg-
length”, or “shoulder-width”. The dimensions and angles
have to be the same in all views, but the pose can be dif-
ferent. Symmetry constraints, that the left and right body
lengths are the same, are enforced as well. Minimizing only
over angles, or only over model dimensions results in linear
equations similar to what we have shown so far. Unfortu-
nately the global minimization criteria over all parameters is
a tri-linear equation system, that cannot be easily solved by
simple matrix inversions. There are several possible tech-
niques for minimizing such functions. We achieved good
results with a Quasi-Newton method and a mixed quadratic
and cubic line search procedure.

2.7 Model Fine Tuing
The supplied hand labels in the first frame should coincide

with the location of the joints. We can roughly guess where
the joints are, but still don’t know exactly the underlying
bone structure and their kinematics. We are able to extend
the state space of our motion tracking framework, such that
we also optimize over the kinematic model, and over the
complete image sequence, instead of an image pair. Due to
space limitations the details of the extended algorithm are
described in the accompanying technical report [8].

3 Results
We applied this technique to video recordings in our lab

and to photo-plate sequences of Eadweard Muybdrige’s mo-
tion studies [21].



                                                            

Figure 2: Example configurations of the estimated kinematic
structure. First image shows the support maps of the initial
configuration. In subsequent images the white lines show
blob axes. The joint is the position on the intersection of
two axes.
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Figure 3: Comparison of a) data from [Murray et al] (left)
and b) our motion tracker (right).

3.1 Single camera recordings
Our lab video recordings were done with a single cam-

era. Therefore the 3D pose and some parts of the body can
not be estimated completely. Figure 2 shows one example
sequences of a person walking in a frontoparallel plane. We
defined a 6 DOF kinematic structure: One blob for the body
trunk, three blobs for the frontal leg and foot, connected with
a hip joint, knee joint, and ankle joint, and two blobs for the
arm connected with a shoulder and elbow joint. All joints
have an axis orientation parallel to the Z-axis in the camera
frame. The head blob was connected with one joint to the
body trunk. The first image in figure 2 shows the initial blob
support maps.

After the hand-initialization we applied the motion
tracker to a sequence of 53 image frames. We could suc-
cessfully track all body parts in this video sequence (see
web-page). The video shows that the appearance of the
upper leg changes significantly due to moving folds on the
subject’s jeans. The lower leg appearance does not change
to the same extent. The constraints were able to enforce
compatible motion vectors for the upper leg, based on more
reliable measurements on the lower leg.

We can compare the estimated angular configurations
with motion capture data reported in the literature. Murray,
Brought, and Kory published [19] such measurements for
the hip, knee, and angle joints. We compared our motion
tracker measurements with the published curves and found
good agreement. Figure 3.1a shows the curves for the knee
and ankle reported in [19], and figure 3.1b shows our mea-
surements.

We also experimented with a walking sequence of a sub-
ject seen from an oblique view with a similar kinematic
model. As seen in figure 4, we tracked the angular configu-
rations and the pose successfully over the complete sequence
of 45 image frames. Because we use a scaled orthographic
projection model, the perspective effects of the person walk-
ing closer to the camera had to be compensated by different
scales. The tracking algorithm could successfully estimate

Figure 5: Eadweard Muybridge, The Human Figure in Mo-
tion, Plate 97: Woman Walking. The first 3 frames show
part of a walk cycle from one example view, and the second
3 frames show the same time steps from a different view

the scale changes.

3.2 Digital Muybridge
The final set of experiments was done on historic footage

recorded by Eadweard Muybridge in 1884 [21]. His meth-
ods are of independent interest, as they predate motion pic-
tures. Muybridge had his models walk in an open shed.
Parallel to the shed was a fixed battery of 24 cameras. Two
portable batteries of 12 cameras each were positioned at
both ends of the shed, either at an angle of 90 deg relative
to the shed or an angle of 60 deg. Three photographs were
take simultaneously, one from each battery. The effective
‘framerate’ of his technique is about two times lower then
current video frame rates; a fact which makes tracking a
harder problem.. It is to our advantage that he took for each
time step three pictures from different viewpoints.

Figure 3.2 and figure 3.2 shows example photo plates. We
could initialize the 3D pose by labeling all three views of
the first frame and running the minimization procedure over
the body dimensions and poses. Every body segment was
visible in at least one of the three camera views, therefore
we could track the left and the right side of the person. We
applied this technique to a walking woman and a walking
man. For the walking woman we had 10 time steps available
that contained 60 % of a full walk cycle (figure 3.2). For
this set of experiments we extended our kinematic model
to 19 DOFs. The two hip joints, the two shoulder joints,
and the neck joint, were modeled by 3 DOFs. The two
knee joints and two elbow joints were modeled just by one
rotation axis. Figure 3.2 shows the tracking results with the
model overlayed. As you see, we could successfully track
the complete sequence. To animate the tracking results
we mirrored the left and right side angles to produce the
remaining frames of a complete walk cycle. We animated
the 3D motion capture data with a stick figure model and a
volumetric model (figure 9), and it looks very natural. The
video shows some of the tracking and animation sequences
from several novel camera views, replicating the walk cycle
performed over a century ago on the grounds of University
of Pennsylvania.

For the visualization of the walking man sequence, we did
not apply the mirroring, because he was carrying a boulder
on his shoulder. This made the walk asymmetric. We re-
animated the original tracked motion (figure 3.2) capture
data for the man, and it also looked very natural.

4 Conclusion
In this paper, we have developed and demonstrated a

new technique for articulated visual motion tracking. We



                                                                        

Figure 4: Example configurations of the estimated kinematic structure of a person seen from an oblique view.

Figure 6: Eadweard Muybridge, The Human Figure in Mo-
tion, Plate 7: Man walking and carrying 75-LB boulder on
shoulder. The first 3 frames show part of a walk cycle from
one example view, and the second 3 frames show the same
time steps from a different view

Figure 7: Muybridge’s Woman Walking: Motion Capture
results. This shows the tracked angular configurations and
its volumetric model projected to 2 example views.

Figure 8: Muybridge’s Man Walking: Motion Capture re-
sults. This shows the tracked angular configurations and its
volumetric model projected to 2 example views.

Figure 9: Computer models used for the animation of the
Muybridge motion capture. Please check out the web-page
to see the quality of the animation.



demonstrated results on video recordings of people walking
both in frontoparallel and oblique views, as well as on the
classic Muybridge photographic sequences recorded more
than a century ago.

Visually tracking human motion at the level of individual
joints is a very challenging problem. Our results are due, in
large measure, to the introduction of a novel mathematical
technique, the product of exponential maps and twist mo-
tions, and its integration into a differential motion estimation
scheme. The advantage of this particular formulation is that
it results in the equations that need to be solved to update
the kinematic chain parameters from frame to frame being
linear, and that it is not necessary to solve for any redundant
or unnecessary variables.

Future work will concentrate on dealing with very large
motions, as may happen, for instance, in videotapes of high
speed running. The approach developed in this paper is a
differential method, and therefore may be expected to fail
when the motion from frame-to-frame is very large. We
propose to augment the technique by the use of an initial
coarse search stage. Given a close enough starting value,
the differential method will converge correctly.
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