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Abstract

The problem we consider in this paper is to take a single
two-dimensional image containing a human body, locate
the joint positions, and use these to estimate the body con-
figuration and pose in three-dimensional space. The ba-
sic approach is to store a number of exemplar 2D views of
the human body in a variety of different configurations and
viewpoints with respect to the camera. On each of these
stored views, the locations of the body joints (left elbow,
right knee etc) are manually marked and labelled for future
use. The test shape is then matched to each stored view, us-
ing the technique of shape context matching. Assuming that
there is a stored view sufficiently similar in configuration
and pose, the correspondence process will succeed. The
locations of the body joints are then transferred from the
exemplar view to the test shape. Given the joint locations,
the 3D body configuration and pose are then estimated. We
present results of our method on a corpus of human pose
data.

1 Introduction

As indicated in Figure 1, the problem we consider in this pa-
per is to take a single two-dimensional image containing a
human body, locate the joint positions, and use these to esti-
mate the body configuration and pose in three-dimensional
space. Variants include the case of multiple cameras view-
ing the same human, tracking the body configuration and
pose over time from video input, or analogous problems for
other articulated objects such as hands, animals or robots.
A robust, accurate solution would facilitate many different
practical applications–e.g. see Table 1 in Gavrila’s survey
paper[10]. From the perspective of computer vision theory,
this problem offers an opportunity to explore a number of
different tradeoffs in –the role of low level vs. high level
cues, static vs. dynamic information, 2D vs. 3D analysis,
etc. in a concrete setting where it is relatively easy to quan-
tify success or failure.

There has been considerable previous work on this prob-
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Figure 1: The goal of this work. (a) Input image. (b)
Automatically extracted keypoints. (c) 3D rendering of
estimated body configuration. In this paper we present a
method to go from (a) to (b) to (c).

lem [10]. Broadly speaking, it can be categorized into two
major classes. The first set of approaches use a 3D model
for estimating the positions of articulated objects. Pioneer-
ing work was done by O’Rourke and Badler [18], Hogg[11]
and Yamamoto and Koshikawa [25]. Rehg and Kanade [19]
track very high DOF articulated objects such as hands. Bre-
gler and Malik [5] use optical flow measurements from a
video sequence to track joint angles of a 3D model of a
human, using the product of exponentials representation for
the kinematic chain. Kakadiaris and Metaxas[15] use multi-
ple cameras and match occluding contours with projections
from a deformable 3D model. Gavrila and Davis [9] is an-
other 3D model based tracking approach, as is the work of
Rohr [20] for tracking walking pedestrians. It should be
noted that pretty much all the tracking methods require a
hand-initialized first video frame.

The second broad class of approaches does not explicitly
work with a 3D model, rather 2D models trained directly
from example images are used. There are several variations
on this theme. Baumberg and Hogg[1] use active shape
models to track pedestrians. Wren et al. [24] track people
as a set of colored blobs. Morris and Rehg [17] describe
a 2D scaled prismatic model for human body registration.
Ioffe and Forsyth [12] perform low-level processing to ob-
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tain candidate body parts and then use a mixture of trees
to infer likely configurations. Song et al. [21] use a sim-
ilar technique involving feature points and inference on a
tree model. Toyama and Blake [23] use 2D exemplars to
track people in video sequences. Brand [4] learns a proba-
bility distribution over pose and velocity configurations of
the moving body and uses it to infer paths in this space.

In this paper we consider the most basic version of the
problem–estimating the 3D body configuration based on a
single uncalibrated 2D image. The basic idea is to store
a number of exemplar 2D views of the human body in a
variety of different configurations and viewpoints with re-
spect to the camera. On each of these stored views, the
locations of the body joints (left elbow, right knee etc) are
manually marked and labelled for future use. The test shape
is then matched to each stored view, using the shape con-
text matching technique of Belongie, Malik and Puzicha
[3]. This technique is based on representing a shape by a
set of sample points from the external and internal contours
of an object, found using an edge detector. Assuming that
there is a stored view “sufficiently” similar in configuration
and pose, the correspondence process will succeed. The lo-
cations of the body joints are then “transferred” from the ex-
emplar view to the test shape. Given the joint locations, the
3D body configuration and pose are estimated using Tay-
lor’s algorithm [22].

The structure of the paper is as follows. In section 2
we elaborate on the estimation approach described above.
We show experimental results in section 3. We discuss the
issue of models versus exemplars in section 4. Finally, we
conclude in section 5.

2 Estimation Method

In this section we provide the details of the configuration
estimation method proposed above. We first obtain a set of
boundary sample points from the image. Next, given a set
of exemplars extracted from a training set (method for ob-
taining exemplars is outlined in Appendix A), we find the
best match among the exemplars. We use this match, along
with correspondences between boundary points on the test
image and the exemplar, to estimate the 2D image positions
of 14keypoints(hands, elbows, shoulders, hips, knees, feet,
head and waist) on the test image. These keypoints can then
be used to construct an estimate of the 3D body configura-
tion in the test image.

2.1 Matching using Shape Contexts

In our approach, a shape is represented by a discrete set
P = fp1; : : : ; png, pi 2 R2, of n points sampled from the
internal or external contours on the shape.
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Figure 2: Shape contexts. (a,b) Sampled edge points of two
shapes. (c) Diagram of log-polar histogram bins used in
computing the shape contexts. We use 5 bins forlog r and
12 bins for�. (d-f) Example shape contexts for reference
samples marked byÆ; �; / in (a,b). Each shape context is
a log-polar histogram of the coordinates of the rest of the
point set measured using the reference point as the origin.
(Dark=large value.) Note the visual similarity of the shape
contexts forÆ and�, which were computed for relatively
similar points on the two shapes. By contrast, the shape
context for/ is quite different.

We first perform Canny edge detection [6] on the image
to obtain a set of edge pixels on the contours of the body.
We then sample some number of points (around 300 in our
experiments) from these edge pixels to use as the sample
points for the body. Note that this process will give us not
only external, but also internal contours of the body shape.
The internal contours are essential for estimating configura-
tions of self-occluding bodies. See Figure 4 (a) for exam-
ples of sample points.

For each pointpi on a given shape, we want to find the
“best” matching pointqj on another shape. This is a corre-
spondence problem similar to that in stereopsis. Experience
there suggests that matching is easier if one uses a rich local
descriptor. Rich descriptors reduce the ambiguity in match-
ing.

The shape contextwas introduced in [3] to play such a
role in shape matching. Consider the set of vectors originat-
ing from a point to all other sample points on a shape. These
vectors express the configuration of the entire shape relative
to the reference point. Obviously, this set ofn�1 vectors is
a rich description, since asn gets large, the representation
of the shape becomes exact.

The full set of vectors as a shape descriptor is much too
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detailed since shapes and their sampled representation may
vary from one instance to another in a category. Thedistri-
butionover relative positions is a more robust and compact,
yet highly discriminative descriptor. For a pointpi on the
shape, compute a coarse histogramhi of the relative coor-
dinates of the remainingn� 1 points,

hi(k) = # fq 6= pi : (q � pi) 2 bin(k)g :

This histogram is defined to be theshape contextof pi. The
descriptor should be more sensitive to differences in nearby
pixels, which suggests the use of a log-polar coordinate sys-
tem. An example is shown in Fig. 2(c). Note that the scale
of the bins forlog r is chosen adaptively, on a per shape ba-
sis. This makes the shape context feature invariant to scal-
ing.

As in [3], we use�2 distances between shape contexts as
a matching cost between sample points.

We would like a correspondence between sample points
on the two shapes that enforces the uniqueness of matches.
This leads us to formulate our matching of a test body to
an exemplar body as an assignment problem (also known as
the weighted bipartite matching problem) [7]. We find an
optimal assignment between sample points on the test body
and those on the exemplar.

To this end we construct a bipartite graph (Figure 3). The
nodes on one side represent sample points on the test body,
on the other side the sample points on the exemplar. Edge
weights between nodes in this bipartite graph represent the
costs of matching sample points. Similar sample points will
have a low matching cost, dissimilar ones will have a high
matching cost.�-cost outlier nodes are added to the graph
to account for occluded points and noise - sample points
missing from a shape can be assigned to be outliers for some
small cost. We use the assignment problem solver in [14] to
find the optimal matching between the sample points of the
two bodies.

We compare the test body to all of the exemplars from
our training set. The exemplar with the lowest total match-
ing cost is chosen for use in keypoint estimation.

Note that the output of more specific filters, such as face
or hand detectors, could easily be incorporated into this
framework. The matching cost between sample points can
be measured in many ways.

2.2 Locating Keypoints

The next step is to estimate the 2D image positions of the 14
keypoints (hands, elbows, shoulders, hips, knees, feet, head,
waist) on the test body. From the solution to the assignment
problem in section 2.1 we have correspondences between
sample points (not keypoints) on the test body and the clos-
est exemplar body. In addition, each exemplar from the
training set has user-clicked(x; y) locations of keypoints.

B2 NodesB1 Nodes

Outlier Nodes

Sample Point
Nodes

ε
ε

C(i,j)

C(i,j)
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ε

C(i,j)

Figure 3: The bipartite graph used to match sample points
of two bodies. Only the edges from the first node are shown
for clarity. Each node fromB1 is connected to every node
from B2. In addition,�-cost outlier nodes are added to ei-
ther side. These outlier nodes allow us to deal with missing
sample points between figures (arising from occlusion and
noise).

We would like to use these correspondences and exemplar
keypoint locations to estimate the keypoint positions on the
test body.

We use a simple method for this estimation process (Fig-
ure 4). For each keypointkie on the exemplar we want to
estimate its position on the test bodykit. We select a set
of sample pointsP i

e from the exemplar as a support for
this keypoint. The solutionAopt to the assignment problem
gives a corresponding set of pointsP i

t = Aopt(P
i
e) on the

test body. We estimate the best (in the least-squares sense)
transformationT i : R2 ! R2 that takesPe to Pt. We then
apply this transformation to the keypoint:kit = T i(kie).

In our experiments, the support for a keypoint is defined
to be all sample points within a disc of some small radius.
The transformationT is simply a translation. One could
alternatively use affine or rigid transformations.
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2.3 Estimating 3D Configuration

We use Taylor’s method in [22] to estimate the 3D configu-
ration of a body given the keypoint position estimates. Tay-
lor’s method works on a single 2D image, taken with an
uncalibrated camera.

It assumes that we know:

1. the image coordinates of keypoints(u; v)

2. the relative lengthsl of body segments connecting
these keypoints

3. a labelling of “closer endpoint” for each of these body
segments

4. that we are using a scaled orthographic projection
model for the camera

We can then solve for the 3D configuration of the body
f(Xi; Yi; Zi) : i 2 keypointsg up to some ambiguity in
scales. The method considers the foreshortening of each
body segment to construct the estimate of body configura-
tion. For each pair of body segment endpoints, we have the
following equations:

l2 = (X1 �X2)
2 + (Y1 � Y2)

2 + (Z1 � Z2)
2

(u1 � u2) = s(X1 �X2)

(v1 � v2) = s(Y1 � Y2)

dZ = (Z1 � Z2)

=) dZ =
p
l2 � ((u1 � u2)2 + (v1 � v2)2)=s2

To estimate the configuration of a body, we first fix one
keypoint as the reference point and then compute the posi-
tions of the others with respect to the reference point. Since
we are using a scaled orthographic projection model theX
andY coordinates are known up to the scales. All that re-
mains is to compute relative depths of endpointsdZ. We
compute the amount of foreshortening, and use the user-
supplied “closer endpoint” labels from the closest matching
exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scalesmin can
be estimated from the fact thatdZ cannot be complex.

s �

p
(u1 � u2)2 + (v1 � v2)2

l

This minimum value is a good estimate for the scale
since one of the body segments is often perpendicular to
the viewing direction.

(a) (b)

KP exemplar

KP estimate

(a) (b)

Figure 4: Locating keypoints. (a) Sample points on exem-
plar and test body, with lines showing correspondences. (b)
Support for estimating transformation of right foot, along
with estimate of position.
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3 Results

We applied our method to the human figures in Eguchi’s
pose file collection [8]. This book contains a thorough col-
lection of artist reference photographs of one model per-
forming typical actions. The book depicts actions such as
skipping, jumping, crawling, and walking. Each action is
photographed from about 8 camera angles each, and per-
formed in 3 levels of clothing (nude, casual, and skirt).

We selected 48 training images (two from each clothing-
action pair), and derived 20 exemplars from this training
set. These 20 exemplars were then used to match with 48
different test images (again two from each class).

The positions of 14 keypoints (hands, elbows, shoulders,
feet, knees, hips, waist and head) were manually labelled
on each training image. We automatically locate the 2D
positions of these keypoints in each of our test images, and
then estimate a 3D configuration. Figures 5,6, and 7 show
some example 3D configurations that were obtained using
our method.

Figure 8 shows distributions of error in the location of
the 2D keypoints. Ground truth was obtained through user-
clicking. The large errors (especially for hands and feet) can
be attributed to ambiguities between left and right limbs.
Discrimination between left and right limbs in a 2D image
requires more complex reasoning.

4 Discussion

We have presented a hybrid exemplar and model-based
approach to estimating human body configurations. Our
method matches using 2D exemplars, estimates keypoint
locations, and then uses these keypoints in a model-based
algorithm for determining 3D body configuration. We be-
lieve that this hybrid approach has advantages over strictly
model or exemplar-based approaches.

3D model-based matching is difficult. An articulated
model of a person has a high number of degrees of free-
dom. Typical approaches involve projecting the model into
the image, computing an error term, and minimizing this
error. This minimization is problematic – there are many
local minima, and a gradient descent procedure will have
difficulty finding a correct pose match. In contrast, our
exemplar-based matching process is fast (assignment prob-
lems can be solved inO(N3) time for N sample points),
and guaranteed to find the global optimum. There could be
some concerns over the number of exemplars needed to deal
with a wide range of poses. However, previous work [3, 16]
suggests that our shape context based matching will be suc-
cessful in scaling to handle more classes of activities and
variation in human appearance.

While 2D exemplars make solving the correspondence
problem easy, a good case can be made for inferring 3D

pose parameters as features to be used in dynamic models
for tracking and activity recognition. There appear to be
two advantages: (1) the space of pose parameters has re-
duced dimensionality compared to the image measurement
space and (2) acquiring models of activities as trajectories in
pose space makes it unnecessary for us to learn these mod-
els separately for various camera viewpoints as would be
necessary in a purely view-based approach.

5 Conclusion

In this paper we have presented a simple, yet apparently
effective, approach to estimating human body configura-
tions in 3D, based on matching with multiple 2D exemplars.
There are several obvious directions for future work

1. The 2D shape matching could make use of additional
attributes such as distances from labelled features such
as faces or hands, orientation of edge elements etc.

2. The 2D matching process can be iterated with defor-
mation to better align the exemplar with test shape. In
previous shape context work, the thin plate spline was
used as the deformation model and found to consid-
erably improve both recognition accuracy as well as
reduce the number of exemplar views that need to be
stored. For human body matching, the 3D kinematic
model is an obvious choice. Other alternatives might
be learned 2D deformation models along the lines of
e.g. Jojic et al.[13].

3. When video data is available, then estimation can ben-
efit from temporal context. Human dynamic models
are most naturally expressed in joint angle space, and
our hybrid framework provides a natural way to incor-
porate this information in the 3d configuration estima-
tion stage.

A Obtaining Exemplars

We derive a set of exemplars from a training set using the
k-medoids algorithm [2]. We compute pairwise distances
between training bodies using the method outlined in sec-
tion 2.1. These distances are fed into thek-medoids algo-
rithm to produce clusters of similar training bodies. Thek-
medoids algorithm is an analog of thek-means algorithm in
which one has only pairwise distances between points, and
no underlying metric space. The cluster centers are con-
strained to be actual elements of the cluster. We use these
cluster centers as our exemplars.

We would like a relatively small set of exemplars that
adequately covers the variation in body configurations. The
k-medoids algorithm gives us just that, clustering similar
configurations to be represented by a single exemplar.
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Figure 5: Example renderings. (a) Original image with lo-
cated keypoints. (b) 3D rendering (green is left, red is right).
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Figure 6: Example renderings. (a) Original image with lo-
cated keypoints. (b) 3D rendering (green is left, red is right).
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Figure 7: Example renderings. (a) Original image with lo-
cated keypoints. (b) 3D rendering (green is left, red is right).
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Figure 8: Distributions of error in 2D location of keypoints.
(a) Hands, (b) Feet, (c) Elbows, (d) Knees, (e) Shoulders,
(f) Hips, (g) Head, (h) Waist. Error (X-axis) is measured in
terms of pixels. Y-axis shows fraction of keypoints in each
bin. The average image size is 380 by 205 pixels. Large
errors in positions are due to ambiguities regarding left and
right limbs.
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