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Abstract

Almost all work on texture in the computer vision
and graphics communities has modeled the texture as
tangential, z.e. lying in the tangent plane to the sur-
face. This is equivalent to thinking of the texture as
a pattern painted on the surface. Three-dimensional
textures, where the elements may point out of the sur-
face, have largely been ignored. We study a special
class of 3D textures, perpendicular textures where we
can model the elements as being normal to the sur-
face. The perspective projection of perpendicularly tex-
tured surfaces results in several interesting phenom-
ena, which do not occur in the much-studied tangential
texture case. These include occlusion, foreshortening
and dlumination.

In this paper, we study the geometry of the problem,
modeling the locations of the elements of the texture as
being a realization of a spatial point process. Relations
between slant and tilt of the surface, density and height
of elements and occlusions are derived. Occlusions can
now be used as a cue to infer shape, instead of being
treated as a source of error.

1 Introduction

Almost all work on texture in the computer vision
and graphics communities has modeled the texture as
tangential, i.e. lying in the tangent plane to the sur-
face [1, 2, 3,4, 5, 8].1 This is equivalent to thinking of
the texture as a pattern painted on the surface. Spots
on a leopard, or the stripes on a zebra are canonical
examples. Three-dimensional textures, where the ele-
ments may point out of the surface, have largely been
ignored. However, such textures e.g. animal fur, hair,
fields of yellow flowers are in fact quite common in our
visual world. Some examples are shown in Figure 1.
We study a special class of 3D textures, perpendicular
textures where we can model the elements as being
normal to the surface. The perspective projection of
perpendicularly textured surfaces results in several in-
teresting phenomena, which do not occur in the much-
studied tangential texture case. These include (1) Oc-
clusion: When an element is behind another one in the
line of sight, part of it will be occluded. This prob-
lem 1s aggravated when the orientation of the surface

1Despite the tangential texture assumption, [2] managed to
recover reasonable shape information for 3D textures by detect-
ing texels and restricting to planar surfaces. However, occlusion
is treated as error which has to be dealt with.

changes, causing different parts of the elements to be
seen. (2) Foreshortening: The relation of foreshort-
ening to slant and tilt is different for tangential and
perpendicular textures. (3) Illumination: Elements no
longer lie on a surface, therefore, self-shadowing has
to be considered.

Figure 1: Some examples of perpendicular texture.

In this paper, we study (1) — the occlusion proper-
ties of perpendicular texture. We model the locations
of the elements of the texture as being a realization
of a spatial point process. Relations between slant
and tilt of the surface, density, height and radius of
elements and occlusions are derived. Occlusions can
now be used as a cue to infer shape, instead of being
treated as a source of error. Of the other two problems
in the study of perpendicular textures, (2) remains
largely unexplored; (3) was considered by Koenderink
and van Doorn in their work on the photometry of
meso structure on surfaces in [7].

The most related work is by Kajiya and Kay [6],
where they studied the problem of rendering fur. They
used a volume of “particles” to model the properties
of fur. Rendering is basically calculating the amount
of light transmitted and attenuated when passing
through the volume.

2 Texture Model

We model the locations of the elements of the tex-
ture as being a realization of a spatial point process
(also known as a point field). The simplest example
is the homogeneous Poisson field, which assumes that
(1) the number of points in a window is a Poisson ran-
dom variable; (2) the numbers of points in two disjoint
windows are independent. The poisson field is usually



Figure 2: Realizations of our model on planar and
curved surfaces.

perceived as a completely random point field. Another
interesting example is the hard core model, where the
elements are prohibited to lie within a certain inhibi-
tion radius from each other. For more details about
spatial point processes, the reader is referred to [9, 10].

We model the elements as identical cylinders (ra-
dius », height h) pointing out of the surface. The
color/albedo of an element may change along its verti-
cal extent. Figure 2 are two realizations of our model,
one for a planar surface, and one for a curved surface.

3 Viewing Geometry

The basic geometry is shown in Figure 3. Our no-
tations follow that of Garding [4]. The viewer is look-
ing at a smooth surface S projected onto the image
sphere X. The backprojection map F from X to S is
defined by F(p) = r(p) = r(p)p. where p is a unit
vector from the focal point to a point on the image
sphere, and r(p) is the distance along the visual ray
from the focal point through p to the corresponding
point # = F(p) on the surface S. The differential of
the backprojection map F, maps tangent vectors of &
at p to tangent vectors of S at F(p).
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Figure 3: Local surface geometry.
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Define the tilt direction ¢ in 7,(X), the tangent
plane of the viewing sphere at p, to be a unit vec-
tor in the direction of the gradient of the distance
function r(p), and the auxiliary vector b = p x .
Then (t,b) form an orthonormal basis for the tan-
gent plane to the image sphere X and together with p
constitute an orthonormal frame field on X. Garding
shows that ¢ and b backproject to orthogonal vec-
tors Fiu(t) = r'p + rt and F,(b) = rb in the tan-
gent space Tp(,)(S), where r’ is the directional deriva-
tive of the distance r with respect to ¢. Defining
T = F.(£)/|F.(t)] and B = —F. (b)/|F.(b)] gives us
an orthonormal basis (T, B) of the tangent space of
the surface at F(p). The vectors T, B along with the
unit normal to the surface N = T x B constitute

an orthonormal frame field on the surface. The slant
angle ¢ is defined to be the angle between the sur-
face normal IN and the viewing direction p, so that
cosoc = —IN - p. One important point to notice is that
b and B are parallel. This implies that p, NV and T
lie on the same plane. This is the plane of normal
section due to IT'. We call this plane Pr. From the
point of view of occlusion, what happens on Pr is all
we have to care about. The reason is that the viewing
direction p lies on Pr and occlusion can happen only
when an object is along the viewing direction.

4 Planar Surfaces

We first consider planar surfaces. One nice fact
about planar surfaces is that the surface normal is
everywhere parallel to Pr. This implies that either a
surface normal lies completely on Pr. or it does not
intersect Pr at all. In other words, assuming that
each element 1is infinitesimally thin, no element will
intersect the viewing ray unless it lies on Pr.

4.1 Occlusion Properties

We first calculate the probability that a certain ele-
ment will be occluded. Imagine looking at the surface
at a slant of ¢ in Figure 2 (a). The side and top views
of the situation are shown in Figure 4. The elements
are of constant height h and radius r. y; is a normal-
ized measure along the vertical extent of the element
and goes from 0 to 1. The frame field (T, B, N) dis-
cussed in Section 3 is defined at the point where the
viewing ray hits the surface. It is used as the local
coordinate system.

Occlusions happen only when an element intersects
the viewing ray. The locations on the surface at which
surface normals of height h intersect the viewing ray
is a curve. We call this curve the base curve Cy. C 1s
a straight line segment for a planar surface, as shown
in Figure 4. By simple geometry, the length of the
base curve {(Cy) is htano. Taking into account the
radius of each element, the locations on the surface at
which elements can intersect the viewing ray is well-
approximated by a tube of width 2r along Cp. We call
this tube the base region Rp.

What we see in a particular viewing direction can
be expressed very simply using the base curve. Con-
sider the middle element in Figure 4. We will be able
to see it if there are no elements lying in the region
R5, which is a tube of width 2r along the appropriate
part of Cp. Therefore, the probability that this ele-
ment will not be occluded 1s just the probability that
no element lies in the region Rs. The answer is very
simple if the locations of the elements follow a homo-
geneous Poisson field. 2 For a poisson field model, the
number of elements in a window W is a poisson ran-
dom variable with parameter AA(W), where A(W) is
the area of W. A is called the intensity of the point
field, which is the expected number of elements inside

2Note that the Poisson model can be used only as an ap-
proximation — cylinders of radius r cannot be placed les than
2r apart. A hard core model with inhibition radius » would be
more accurate. However, for mathematical tractability, we pre-
fer to use the Poisson model and remark that this is a valid ap-
proximation for textures that are relatively sparse (Arr? < 1).
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Figure 4: Side and top views of the viewing geometry
for elements lying on a plane. In the side view, the
page is the Pr plane. The locations on the surface at
which surface normals of height £ intersect the viewing
ray define the base curve Cp.

a region of unit area. Therefore, the probability that
no elements appear in W is exp(—AA(W)). The area
of Ry is 2r(1 — ys)h tan o and so the probability of no
occlusion is:

PI'(N(RQ) = 0)
exp(—2Ahr(1 — yo) tan o) (1)

Pno

where N (W) denotes the number of elements in the
region W.

We can decompose the exponent of Py into the
product of three terms: —2Ahr - (1 — y) - tano, each
with a simple physical interpretation:

1. Ahr is a dimensionless constant which is a mea-
sure of the “crowdedness” of the texture. It in-
creases with density A (no. of elements m=?2),
height A (m), and radius r (m). As “crowded-
ness” increases (Ahr 1), Pyo decreases. This is
a very intuitive relation. Imagine standing in the
middle of Mahattan, all the buildings around you
are tall and close to each other. The probability
of seeing the sun is very low. When buildings get
taller (h 1), or denser (A 1), or wider (r 1), the

probability of seeing the sun becomes even lower.

2. Pno decreases as exp(—tan o). When one looks
at the surface at grazing angles (o tends to 90°),
the probability of seeing the element at height
yh tends to 0. Conversely, perpendicular texture
becomes like tangential texture as ¢ — 0. In
Manhattan, it’s more likely to see the sun at noon
than at sunset.

3. Pyo increases as y increases, meaning the base
of the element is more likely to be occluded than
the tip, or intuitively: The higher you are in a
building, the more likely you will see the sun.

Equation 1 tells us the visibility probability, con-
ditional on the existence of an element that we are

looking at. In an image, however, what we observe
at a certain pixel is the color or the gray-scale value.
So the natural question to ask is: what is the prob-
ability of seeing a particular color, say yellow, which
is painted on the element from the height y1 h to y2h?
Again, the answer is very simple. It is the probability
that at least one element lies in the region R; and no
element lies in region R» of Figure 4:

Pr(yellow) = Pr(N(R2) = 0) - Pr(N(R;) > 0)
:e—)\A(Rg) . (1 _ 6—)\14(31))

— 6—2)\hr(1—y2)tana _ 6—2)\hr(1—y1)tan0(2)

where we used A(R;) = exp(—2Ahr(y2 — yl) tan o)
and A(R2) = exp(—2Ahr(l — y2)tano).

The probability of seeing the top of the elements is
the area occupied by the element versus the total area:
Anr?. This holds only when ¢ < 90°. Also, recall that
we have used a poisson model in the above calcula-
tions. It is applicable only when Anr? <« 1 meaning
that the area occupied by the elements is small com-
pared to the total area. Therefore, the probability of
seeing the top can usually be ignored.

4.2 “Field of Yellow Flowers”

Let us consider an example of a field of yellow flow-
ers (Figure 1). We model it by cylinders distributed
on the plane according to a homogeneous Poisson field.
The lower 3/4 of the stem is green, while the upper
1/4 of the stem and the top of the flower is yellow.
Using Equation 2, the probabilities are:

Pr(green) = ¢ 2Mhrtane _ =2hrtano (3)
Pr(yellow) = 1-— e~ zAhrtano 4 32 (4)

Pr(ground) = 1— Pr(green) — Pr(yellow)
— 6—2)\hr tano )\71'7“2 (5)

The probabilities are plotted as the solid curves in
Figure 10(a). At small slant angles, we are more likely
to see green than yellow. However, when slant is ap-
proaching 90°, we basically just see yellow. Thus we
answer the question in the title of the paper: Why do
we see more flowers in the distance?

5 Curved Surfaces

One fact we exploited in our study of planar sur-
faces is that the elements are parallel to each other and
to Pr: however, this is not true for curved surfaces.
Elements lying outside Pr can intersect the viewing
ray, thus cause occlusion. Figure 5 shows a cylindrical
surface. The viewing direction is 30° from the axis
of the cylinder. Surface normals on the side of the
cylinder can intersect Pr, the (T, N) plane.

Consider the local frame field (T, B,N), the

change in the surface normal is given by the shape

operator:
=VoN | _ |k T T
-VpN | 7| T kK N
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Figure 5: A cylindrical surface. The viewing direction
is 30° from the axis of the cylinder. Surface normals
on the side of the cylinder can intersect the (T,N)
plane. A general formula for the intersection point
will be derived in Section 5.1.2.

where k; and kp are the normal curvatures in the T
and B directions respectively and 7 is the geodesic
torsion. We adopt the convention that curvature is
negative for convex surfaces. By linearity, for any vec-
tor v = AtT + AbB, the change in surface normal
is:

VoN = —(Atky + Abr)T — (AT + Abkp) B (6)
d; = —(Atki+AbT) represents a rotation of the surface
normal along T and &, = —(At7T + Abks) a rotation
along B.

5.1 Occlusion Properties

In this paper. we study the occlusion properties lo-
cally. For general curved objects, a local study is not
adequate. However, if the surface satisfies certain as-
sumptions, a local study is enough. (1) We assume
there is no long-range effect on occlusion. This is gen-
erally true for globally convex objects, ie. x; < 0
and &, < 0 everywhere. (2) The texture elements are
small compared to the global structure. This implies
|hk| < 1 where k is one of the curvature parameters
(Kt: Kb, T) .

As in the planar case, we want to compute the base
curve on which surface normals of height A will in-
tersect the viewing ray. In the general case, surface
normals lying outside the (T', IN) plane can intersect
the viewing ray, thus the base curve does not lie com-
pletely on the (T', N) plane.

5.1.1 Principal Viewing Directions

We first consider the special case 7 = 0. This corre-
sponds to looking at the surface from one of the two
local principal curvature directions. For a cylinder, a
principal curvature direction is along the axis or per-
pendicular to it; for a sphere or a plane, it is any
direction. When 7 = 0, Equation 6 can be rewrit-
ten as VN = —Atx;T — AbkpB. If the surface
is locally convex, k, < 0. Thus the rotation along
B (6, = —Abkp) has the same sign as Ab. What
this means is that the surface normal is rotated away
from the (T, N) plane. Therefore, when Ab # 0, the

surface normal will never intersect the viewing ray,
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Figure 6: Viewing from one of the local principal cur-
vature directions. The base curve is marked on the
graph. The page is the (T, N) plane.

in other words, the base curve lies completely on the
(T, N) plane.

The (T, N) plane is shown in Figure 6. o is the
slant of the surface at the location where the viewing
ray hits the surface. The local frame field is defined at
that point. Let the principal curvature be x; = —1/R.
The local curvature is assumed to be constant in the
neighborhood of the point where the viewing ray hits
the surface. The base curve C} is an arc subtending
an angle 6, as marked in the figure. The length of Cj
is Rf,. We can calculate 8, using the sine rule:

R+h R

sin(m — o)

sin(o — 0)
Simplifying and substituting R = —k, ™'
0y = o—asin(sino(l —hk;)™")

The length of the base curve is thus 6, /(
larly, for an element on the base curve:

—ky). Simi-

6; = o —asin(sino(l — yihkt)_l)

As in the planar case, whether we can see the mid-
dle element in Figure 6 depends totally on the region
Ra. Ry is a tube of width 27 and length (6, —02)/(—k:).
Using a poisson model, the probability of no occlusion

is Pvo = exp(—AA(Rs)):
Pno = exp(=2rA(fy — 02)/(—kt)) (7)

By taking the derivative with respect to x¢, we can
show that Pyo increases as |k;| increases, ie. as cur-
vature increases, elements are turning away from the
line of sight and so the probability of no occlusion in-
creases. It can also be shown that when xk; — 0, we
get back Equation 1 for the planar case.

Suppose the elements are painted yellow in the
range (y1h,ysh), the probability of seeing yellow in
the pixel along the viewing direction is then given by:

Pr(yellow) = Pr(N(R2)=0) Pr(N(Ry)>0)
M) (1 _ AR

8, —6 6, —6
_ _2>\ b 12— —oar &= t1 (8)



where A(Rs) = 2r(f, — 02)/(—k:) and A(Ry) =
2r(0y — 01)/(—k¢). Plots of these curves for values of
y; discussed 1n Section 4.2 are shown in Figure 10(b).

5.1.2 Generic Viewing Directions

We now consider the case 7 # 0. This means that
we are not looking at the surface from one of the
two principal curvature directions. We call this the
generic viewing condition. Recall that a local frame
field (T, B, N) is defined at the point where the view-
ing ray intersects the surface (see Figure 5). Let the
slant at that point be o. As in the previous two cases,
we want to find the base curve Cj. which specifies the
locations of the bases of the elements which intersects
the viewing ray. In the generic viewing condition, sur-
face normals lying outside the (T',IN) plane can in-
tersect the viewing ray, so C does not necessarily lie
completely on the (T, N) plane.

Recall that the texture elements are small com-
pared to the global structure of the surface, ie. |kh| <
1. where k 1s any one of the curvature parameters
(K¢, kb, 7). Therefore, in the following analysis, terms
of the order O((kh)?) or higher are ignored.

We now proceed to determine the base curve for
curved surfaces. Let us first find where the base of
each potentially occluding element lies. Due to local
curvature of the surface, an element based at (A#, Ab)
will not lie on the tangent plane (T', B). The distance
from the tangent plane can be calculated from the nor-
mal section. Rewrite the displacement v = (A, Ab)
in polar form: (Awv,#). The normal curvature along v
is:

ke = Kp sin 6

[ cost sinﬂ]["{t T][COSQ]
r
= kycos?8 + 27sinf cosf + kpsin® 0

The situation is shown in Figure 7. The angle a sub-

tended by Av can be written as a = Av/R = —kpAv.

The distance below the tangent plane is then given by:
Ah = R-— Rcosa

(=k5 ") = (=ke ™) (1= a?/2)

= —Av’kg/2

= (—k A2 = 2TALAD — £ ABY) /2 (9)

The direction of this element is given by the surface

normal at (At, Ab) and is N + Vy N =
N+ 6T+ 6B (10)
We can write it as [d:,dp, 1] with respect to the
(T.B,N) frame field. We now have a parametriza-
tion along the length of the element:
(At, Ab, —Ah) + yh[d, b, 1] (11)
where yh is the distance from the base of the element,

ranging from 0 to h. (Compare with Sections 4.1

and 5.1.1.)

lA h ™\ Tangent Plane
(T.B)

Figure 7: Due to the local curvature, an element at
(At, Ab) does not lie on the tangent plane. The dis-
tance from the tangent plane is given by Ah.

From Figure 5, the element intersects the (T, N)
plane when

Ab+ yhdy = 0 (12)

As a side note, Equation 12 tells us the order of K Ab.
Multiplying both sides by a curvature parameter x,
we have:

KAb+ kh(—AtT — Abrp)y =0 (13)

(—Atr — Abky) is of order O(kh), this implies kKAb
is of order O((kh)?). What this means physically is
that though the base curve does not lie exactly on the
(T, N) plane, the deviation is small.

We now proceed to compute the intersection point
between the element located at (At¢, Ab,—Ah) and
the (T, N) plane. Let the intersection point be
(At;, Ah;). Using Equaions 11 and 12, we have

Ab
vh= X T Abe (14)
Al; = Al+ yhs; (15)
Ah; = —Ah+yh (16)

We can simplify Ah to first order in kh by taking into
account that kAb = O((kh)?). The second and third
terms in Equation 9: (7Ab)At and (k, Ab)Ab are both

of order O((kh)?), while the first term: x;At? is of first
order in kh. Therefore, we can simplify Ah to:

Ah = (—kAt?)/2 (17)

Equations 15 and 16 can then be written as:
At; = At — Ab(Atr, + AbT)(AtT + Abky) 1 (18)
Ah; = kA2 )2 + Ab(AtT + Abky) ™! (19)

We now know the location where the element based
at (At, Ab,—Ah) intersects the (T, N) plane. As
shown in Figure 8, the intersection point will be along
the viewing ray if

—At; = Ah;tanco (20)
Expanding and ignoring terms with order O((kh)?)

or higher, Equation 20 can be written as a quadratic
equation in At and Ab:

tancAb+ TAt? = 0 (21)
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Figure 8: The surface normal is rotated so that it in-
tersects the (T, N) plane at the point (At;, Ah;). This
intersection point is along the viewing ray if Equa-
tion 20 are satisfied.

When 7 = 0, Equation 21 simplifies to Ab = 0. This
says, under principal viewing conditions, we only need
to care about surface normals on the T axis, which is
exactly our observation in Section 5.1.1.

Combining Equation 21 with the constraint on the
height of the elements (yh < h):

Ab

AtT 4+ Abky h (22)
we can specify the points on the base curve. It is
shown in Figure 9. The base curve consists of all the
points (At, Ab, —Ah) where At and Ab satisfy Equa-
tion 21 and the constraint in Equation 22; Ah is given
by Equation 17. Taking into account the radius r of
the elements, we have the base region Rp. which is
the tube of width 2r around the base curve. One
point to notice is that each point on the base curve
completely specifies the intersection point between the
surface normal and the viewing ray by Equation 14.
Thus, occlusion probabilities or probabilities of seeing
a particular color along a viewing direction are com-
pletely determined by the base curve.

Constraint on the . AB
height of the !

elementsin  — = \
Equation 22 v

Base Region R,\/ﬁ(?

i
Base Curve: ij
Equation 21

—Y

Figure 9: The base curve C} for a curved surface in
generic viewing condition. The base region R, is a
tube of width 2r around the base curve.

6 Experiments

In this section, we investigate how good our model
is and verify some of the approximations that we
made. We first compare our predictions on the prob-
ability of seeing a particular color to the empirical
values in synthetic images for both planar and spher-
ical surfaces. The predicted values are shown as the
solid curves in Figures 10(a) and (b) for planar and

spherical surfaces respectively. In the synthetic im-
ages, the elements are modeled as cylinders with the
bottom 3/4 of the stem green and the upper 1/4 of the
stem and the top yellow, same as those discussed in
Section 4.2. The height of the element h is 20 and the
radius r is 1. The locations of the elements are real-
izations of a hard-core model with inhibition radius 1
on a plane and on a sphere. The intensity of the pro-
cess A is 0.01. We generated 60 images for each of the
two surface types. Since we know the actual surface
geometry, we can compute the slant of the surface at
every pixel on the image. The slant is divided into 36
bins evenly distributed from 0 to 7/2. Each set of im-
ages is divided into 6 groups. The average probability
for each color is calculated as a function of slant for
each group. The mean over the 6 groups are plotted
as the crosses in Figure 10. The standard deviations
over the 6 groups are used as an error estimate of
the probabilities. The error bars in the plots are the
20 points. Notice that the predicted and the mea-
sured values agree very well even though we assume a
poisson model in our predictions while the images are
generated using a hard-core model. Azr? = 0.031 is
small, which explains why the poisson model is a good
enough approximation.

P(ground) Y
o7} P(ground) o

Probability
Probabilty

P(green) | | P(green)

1 Piyellow)

l "'hz::,:iii“"" P(yellow)

W W w
Slant in degrees

(b) Spherical Surfaces

w6 e w
Slantin degrees

(a) Planar Surfaces

Figure 10: Probabilities of seeing a particular color vs
slant. Ahr = 0.2. The curvature x; = 0.002 for the
spherical surface. The solid curves are the predicted
values by our model. The “x”s mark the mean of
the empirical probabilities obtained from 60 synthetic
images. The error bars indicate 20 points.

The second experiment we performed was aimed to
investigate how good our model is for real scenes. We
considered the region in the white box in the “field
of yellow flowers” image shown in Figure 11. Simple
color quantization is performed to extract the yellow
pixels and they are shown on the right in Figure 11.

We make the simplifying assumption that we are
looking at the ground plane. However, the slant of
the ground is unknown. The elements are modeled as
cylinders with the upper 1/4 of the stem painted yel-
low as discussed in Section 4.2 3. The free parameter
of the model is Ahr which measures the crowdedness
of the elements.

Given an estimate of the slant at the center of the
image oy and an estimate for Ahr, we can compute the

3We ignore the top of the cylinder because its effect on our
model is very small (Equation 4).



Figure 11: A field of yellow flowers. We consider the
region marked by the red box on the left image. The
image on the right shows the yellow pixels in the red
box using simple color quantization.

0s Slant () = 69.8667°
08 Ahr=0.46157

Probability

w w0 w0
Slant (o) in Degrees

Figure 12: The solid curve is the probability of seeing
yellow using our model. The “x”s are values computed
in the image. The parameters of our model are esti-
mated using nonlinear least square minimization. The
“crowdedness” parameter obtained is : Ahr = 0.4616
and the slant in the center of the image is estimated

to be 69.87°.

empirical probability of seeing yellow from the image
as a function of slant. The mean square difference be-
tween the measured values and the values predicted by
our model is the error. Minimization of this error is a
standard nonlinear least square problem. The result
of the minimization is: Ahr = 0.4616 and og = 69.87°.
These values are quite insensitive to the choice of ini-
tial values for the minimization. Using these parame-
ters, the predicted curve is shown as the solid line in
Figure 12. The probabilities of yellow computed from

[Aa

the image are shown as the “x”s.

7 Conclusions and Discussions

We have presented a model for a special class of
3D textures, perpendicular textures. 3D textures have
been largely ignored in the analytical study of texture
in both computer vision and graphics. In this paper,
we have presented results relating the occlusion prop-
erties of the surface in the scene and the image. Ex-
periments with synthetic images have verified some of
the approximations for the calculation of the different
probabilities. A real image is used to illustrate the ap-
plicability to real scenes. Occlusion, which is usually
being treated as an error, can now be used as a cue to
infer surface shape.

In the present work, the results are derived for one
model — constant height elements in a homogeneous
poisson field. However, for many real world objects,
other models will be more appropriate, e.g. hard core
models with inhibition radius r, elements with non-
constant heights or elements not perpendicular to the
surface. All these are straight forward generalizations
of our present model. Closed form formulae for the dif-
ferent probabilities are difficult to obtain. but numer-
ical solutions are easy enough. Indeed, we have com-
puted numerical solutions for both hard-core models
and gaussianly distributed height models. For random
height distributions, occlusion effects can be well ap-
proximated using elements with constant height equal
to the mean of the distribution. Details of these ex-
periments are skipped in this paper due to space con-
straints.

Combining the geometric part we presented in this
paper together with the photometric part of the prob-
lem is an interesting issue. If we ignore mutual illu-
mination and inter-reflection, whether an element will
be illuminated by a point light source is just the same
as the visibility probability we have studied. The ob-
server will become the light source and the probability
that we can see the element is equivalent to the proba-
bility that the element is under illumination. However,
if we include other effects such as inter-reflection, the
problem is much more complicated. Once this prob-
lem is solved, we could use our model for fast rendering
of objects covered with hair or fur.
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