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Abstract. The problem we consider in this paper is to take a single two-
dimensional image containing a human body, locate the joint positions,
and use these to estimate the body configuration and pose in three-
dimensional space. The basic approach is to store a number of exemplar
2D views of the human body in a variety of different configurations and
viewpoints with respect to the camera. On each of these stored views,
the locations of the body joints (left elbow, right knee, etc.) are manu-
ally marked and labelled for future use. The test shape is then matched
to each stored view, using the technique of shape context matching in
conjunction with a kinematic chain-based deformation model. Assuming
that there is a stored view sufficiently similar in configuration and pose,
the correspondence process will succeed. The locations of the body joints
are then transferred from the exemplar view to the test shape. Given the
joint locations, the 3D body configuration and pose are then estimated.
We can apply this technique to video by treating each frame indepen-
dently — tracking just becomes repeated recognition! We present results
on a variety of datasets.

1 Introduction

As indicated in Figure 1, the problem we consider in this paper is to take a sin-
gle two-dimensional image containing a human body, locate the joint positions,
and use these to estimate the body configuration and pose in three-dimensional
space. Variants include the case of multiple cameras viewing the same human,
tracking the body configuration and pose over time from video input, or analo-
gous problems for other articulated objects such as hands, animals or robots. A
robust, accurate solution would facilitate many different practical applications—
e.g. see Table 1 in Gavrila’s survey paper[1]. From the perspective of computer
vision theory, this problem offers an opportunity to explore a number of different
tradeoffs — the role of low level vs. high level cues, static vs. dynamic informa-
tion, 2D vs. 3D analysis, etc. in a concrete setting where it is relatively easy to
quantify success or failure.

There has been considerable previous work on this problem [1]. Broadly
speaking, it can be categorized into two major classes. The first set of ap-
proaches use a 3D model for estimating the positions of articulated objects.



Fig. 1. The goal of this work. (a) Input image. (b) Automatically extracted keypoints.
(c) 3D rendering of estimated body configuration. In this paper we present a method
to go from (a) to (b) to (c).

Pioneering work was done by O’Rourke and Badler [2], Hogg[3] and Yamamoto
and Koshikawa [4]. Rehg and Kanade [5] track very high DOF articulated objects
such as hands. Bregler and Malik [6] use optical flow measurements from a video
sequence to track joint angles of a 3D model of a human, using the product of
exponentials representation for the kinematic chain. Kakadiaris and Metaxas|7]
use multiple cameras and match occluding contours with projections from a de-
formable 3D model. Gavrila and Davis [8] is another 3D model based tracking
approach, as is the work of Rohr [9] for tracking walking pedestrians. It should
be noted that pretty much all the tracking methods require a hand-initialized
first video frame.

The second broad class of approaches does not explicitly work with a 3D
model, rather 2D models trained directly from example images are used. There
are several variations on this theme. Baumberg and Hogg[10] use active shape
models to track pedestrians. Wren et al. [11] track people as a set of colored
blobs. Morris and Rehg [12] describe a 2D scaled prismatic model for human
body registration. Ioffe and Forsyth [13] perform low-level processing to obtain
candidate body parts and then use a mixture of trees to infer likely configu-
rations. Song et al. [14] use a similar technique involving feature points and
inference on a tree model. Toyama and Blake [15] use 2D exemplars to track
people in video sequences. Brand [16] learns a probability distribution over pose
and velocity configurations of the moving body and uses it to infer paths in this
space. Carlsson [17,18] uses order structure to compare exemplar shapes with
test images. In our previous work [19] we used shape context matching to localize
keypoints directly.

In this paper we consider the most basic version of the problem—estimating
the 3D body configuration based on a single uncalibrated 2D image. The basic
idea is to store a number of exemplar 2D views of the human body in a variety
of different configurations and viewpoints with respect to the camera. On each
of these stored views, the locations of the body joints (left elbow, right knee,
etc.) are manually marked and labelled for future use. This is the only user input



required in our method. The test shape is then matched to each stored view, using
the shape context matching technique of Belongie, Malik and Puzicha [20,21].
This technique is based on representing a shape by a set of sample points from
the external and internal contours of an object, found using an edge detector.
Assuming that there is a stored view “sufficiently” similar in configuration and
pose, the correspondence process will succeed. The locations of the body joints
are then “transferred” from the exemplar view to the test shape. Given the joint
locations, the 3D body configuration and pose are estimated using the algorithm
of Taylor [22].

The structure of the paper is as follows. In section 2 we describe the corre-
spondence process mentioned above. Section 3 provides details on a parts-based
extension to our keypoint estimation method. We describe the 3D estimation
algorithm in section 4. We show experimental results in section 5. Finally, we
conclude in section 6.

2 Estimation Method

In this section we provide the details of the configuration estimation method pro-
posed above. We first obtain a set of boundary sample points from the image.
Next, we estimate the 2D image positions of 14 keypoints (hands, elbows, shoul-
ders, hips, knees, feet, head and waist) on the image by deformable matching
to a set of stored exemplars that have hand-labelled keypoint locations. These
estimated keypoints can then be used to construct an estimate of the 3D body
configuration in the test image.

2.1 Deformable Matching using Shape Contexts

Given an exemplar (with labelled keypoints) and a test image, we cast the prob-
lem of keypoint estimation in the test image as one of deformable matching.
We attempt to deform the exemplar (along with its keypoints) into the shape
of the test image. Along with the deformation, we compute a matching score to
measure similarity between the deformed exemplar and the test image.

In our approach, a shape is represented by a discrete set of n points P =
{p1,---,pn}, pi € R? sampled from the internal and external contours on the
shape.

We first perform Canny edge detection [23] on the image to obtain a set of
edge pixels on the contours of the body. We then sample some number of points
(around 300 in our experiments) from these edge pixels to use as the sample
points for the body. Note that this process will give us not only external, but
also internal contours of the body shape. The internal contours are essential for
estimating configurations of self-occluding bodies. See Figure 2 for examples of
sample points.

The deformable matching process consists of three steps. Given sample points
on the exemplar and test image:

1. Obtain correspondences between exemplar and test image sample points
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Fig. 2. Iterations of Deformable matching. Column (a) shows sample points from the
two figures to be matched. The bottom figure (exemplar) in (a) is deformed into the
shape of the top figure (test image). Columns (b,c,d) show successive iterations of
deformable matching. The top row shows the correspondences obtained through the
shape context matching. The bottom row shows the deformed exemplar figure at each
step. The right arm of the exemplar is deformed to match the right arm of the test
image. The left thigh of the figure is also correctly deformed. However, the left lower
leg is not deformed properly, due to a failure in the correspondence procedure.

2. Estimate deformation of exemplar
3. Apply deformation to exemplar sample points

We perform a small number (4 in experiments) of iterations of this process to
match an exemplar to a test image. Figure 2 illustrates this process.

Sample Point Correspondences

In the correspondence phase, for each point p; on a given shape, we want to
find the “best” matching point g; on another shape. This is a correspondence
problem similar to that in stereopsis. Experience there suggests that matching is
easier if one uses a rich local descriptor. Rich descriptors reduce the ambiguity
in matching.

The shape context was introduced in [20,21] to play such a role in shape
matching. Consider the set of vectors originating from a point to all other sample
points on a shape. These vectors express the configuration of the entire shape
relative to the reference point. Obviously, this set of n — 1 vectors is a rich
description, since as n gets large, the representation of the shape becomes exact.
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Fig. 3. Shape contexts. (a,b) Sampled edge points of two shapes. (c) Diagram of log-
polar histogram bins used in computing the shape contexts. We use 5 bins for logr
and 12 bins for 4. (d-f) Example shape contexts for reference samples marked by o, ¢, <
in (a,b). Each shape context is a log-polar histogram of the coordinates of the rest
of the point set measured using the reference point as the origin. (Dark=large value.)
Note the visual similarity of the shape contexts for o and ¢, which were computed for
relatively similar points on the two shapes. By contrast, the shape context for < is quite
different.

The full set of vectors as a shape descriptor is much too detailed since shapes
and their sampled representation may vary from one instance to another in a
category. The distribution over relative positions is a more robust and compact,
yet highly discriminative descriptor. For a point p; on the shape, compute a
coarse histogram h; of the relative coordinates of the remaining n — 1 points,

hi(k) =#{q#pi : (¢—pi) € bin(k)}

This histogram is defined to be the shape context of p;. The descriptor should
be more sensitive to differences in nearby pixels, which suggests the use of a
log-polar coordinate system. An example is shown in Fig. 3(c). Note that the
scale of the bins for logr is chosen adaptively, on a per shape basis. This makes
the shape context feature invariant to scaling.

As in [20,21], we use x? distances between shape contexts as a matching cost
between sample points.

We would like a correspondence between sample points on the two shapes
that enforces the uniqueness of matches. This leads us to formulate our matching
of a test body to an exemplar body as an assignment problem (also known as
the weighted bipartite matching problem) [24]. We find an optimal assignment
between sample points on the test body and those on the exemplar.



To this end we construct a bipartite graph. The nodes on one side represent
sample points on the test body, on the other side the sample points on the
exemplar. Edge weights between nodes in this bipartite graph represent the
costs of matching sample points. Similar sample points will have a low matching
cost, dissimilar ones will have a high matching cost. e-cost outlier nodes are
added to the graph to account for occluded points and noise - sample points
missing from a shape can be assigned to be outliers for some small cost. We use
the assignment problem solver in [25] to find the optimal matching between the
sample points of the two bodies.

Note that the output of more specific filters, such as face or hand detectors,
could easily be incorporated into this framework. The matching cost between
sample points can be measured in many ways.

Deformation Model

Belongie et al. [20, 21] used thin plate splines as a deformation model. However,
it is not appropriate here, as human figures deform in a more structured manner.
We use a 2D kinematic chain as our deformation model. The kinematic chain has
9 segments: a torso, upper and lower arms, upper and lower legs (see Figure 4).
Our kinematic chain allows translation of the torso, and 2D rotation of the limbs
around the shoulders, elbows, hips and knees. This is a simple representation for
deformations of a figure in 2D. It only allows in-plane rotations, ignoring the
effects of perspective projection as well as out of plane rotations. However, this
deformation model is only used in the matching process and is sufficient to
capture the small deformations of an exemplar.

(a) (b) ()

Fig. 4. The deformation model. (a) Underlying kinematic chain. (b) Automatic as-
signment of sample points to kinematic chain segments on an exemplar. Each different
symbol denotes a different chain segment. (¢) Sample points deformed using the kine-
matic chain.

In order to estimate a deformation or deform a body’s sample points, we
must know to which kinematic chain segment each sample point belongs. On



the exemplars we have hand-labelled keypoints — we use these to automatically
assign the hundreds of sample points to segments.

Since we know the segment S(p;) that each exemplar sample point p; belongs
to, given correspondences {(p;,pi/)} we can estimate a deformation D of the
points {p;}. Our deformation process starts at the torso. We find the best least
squares fit estimate of the translation for the sample points on the torso.

Diorso =T = argmin Z T (ps) — pit|?

pi,S(pi)=torso
- 1
T = N S(;t (pi/ —pi), where N = #{pt . S(pz) — tOTSO}
Di,o(pi)=torso

Subsequent segments along the kinematic chain have rotational joints. We
again obtain the best least squares estimates, this time for the rotations of these
joints. Given previous deformation Dy, along the chain up to this segment, we
estimate Dyymp; as the best rotation around the joint location c;:

Pj = {pi : S(pz) = lzmb]}
Diimp, = R; . = argming,_ . |Ro.c. (Dprew - pi) — pil|?
J 0,c; 6,Cj J

pi €EP;

The best angle of rotation 6 for this joint is then found as:

0 =argming Y (Dprev - pi — ¢;)Ro(cj — pit)
pi €EP;

Zi Qizqwl - Zz Qiqu/

where ¢; = Dprev - p; —c¢; and g/ = pi/ — ¢

0 = arctan

Steps 2 and 3 in our deformable matching framework are performed in this
manner. We estimate deformations for each segment of our kinematic chain
model, and apply them to the sample points belonging to each segment.

We have now provided a method for estimating a set of keypoints using
a single exemplar, along with an associated score (the sum of shape context
matching costs for the optimal assignment). The simplest method for choosing
the best keypoint configuration in a test image is to find the exemplar with
the best score, and use the keypoints predicted using its deformation as the
estimated configuration. However, with this simple method there are concerns
about the number of exemplars needed for a general matching framework. In the
following section we will address this by combining matching results for multiple
exemplars.

3 Using Part Exemplars

Given a set of exemplars, we can choose to match either entire exemplars or parts,
such as limbs, to a test image. The advantage of a parts-based approach that



matches limbs is that of compositionality, which saves us from an exponential
explosion in the required number of exemplars. Consider the case of a person
walking while holding a briefcase in one hand. If we already have exemplars for
a walking motion, and a single exemplar for holding an object in the hand, we
can combine these exemplars to produce correct matching results. However, if
we were forced to use entire exemplars, we would require a different “holding
object and walking” exemplar for each portion of the walk cycle. Using part
exemplars prevents the total number of exemplars from growing to an unwieldy
size. As long as we can ensure that the composition of part exemplars yields an
anatomically correct configuration we will benefit from this reduced number of
exemplars.

The matching process is identical to that presented in the preceding section.
For each exemplar, we deform it to the shape of the test image. However, instead
of assigning a total score for an exemplar, we give a separate score for each limb
on the exemplar. This is done by simply summing the shape context costs for
sample points on a limb.

With NV exemplars we now have N estimates for the location of each of the
6 “limbs” (arms, legs, head, waist). We have to find the “best” combination of
these estimates. It is not sufficient to simply choose each limb independently
as the one with the best score. There would be nothing to prevent us from
violating underlying anatomical constraints. For example, the left leg could be
found hovering across the image disjoint from the rest of the body. We need to
enforce the consistency of the final configuration.

Consider again the case of using part exemplars to match the figure of a
person walking while holding a briefcase. Given a match for the arm grasping
the briefcase, and matches for the rest of the body, we know that there are
constraints on the distance between the shoulder of the grasping arm and the
rest of the body. Motivated by this, the measure of consistency we use is the 2D
image distance between the bases b(l;) (shoulder for the arms, hip for the legs)
of limbs /;. We form a tree structure by connecting the arms and the waist to the
head, and the legs to the waist. For each of the 5 links in this tree, we compute
the N2 2D image distances between all pairs of bases of limbs from the different
exemplars. We now make use of the fact that each whole exemplar on its own is
consistent. For a pair of limbs (I;,3) — limb 1 from exemplar i and limb 2 from
exemplar j, we compare the distance dzlf between the bases of the limbs with
the same distances using limbs 1 and 2 on the same exemplar. We define the
consistency cost of using this pair of limbs (l},l?) together in matching a test
image as the average of the two differences:

dij = [1b(1) = b(I5)l]

d? —di2| +|d}? — di?
12 _ |dij i ij 73
Con;; = 5 (1)
The consistency cost Con;; for using limbs from the same exemplar across
a tree link is zero. As the configuration begins to deviate from the consis-

tent exemplars, Con;; increases. We define the total cost of a configuration




c € {1,2,...,N}% as the weighted sum of consistency and shape context limb
scores:

6
Score(c) = (1 = weon) Y SCe(iy +weon Y Conilie
i=1 links:(ly,ly)

There are N® possible combinations of limbs from the N exemplars. How-
ever, we can find the optimal configuration in O(5N?) time using a dynamic
programming algorithm along the tree structure!.

Moreover, an extension to our algorithm can produce the top K matches for
a given test image. Preserving the ambiguity in this form, instead of making
an instant choice, is particularly advantageous for tracking applications, where
temporal consistency can be used as an additional filter.

PRE-PROCESSING:
% Compute shape contexts for exemplars.
% Click 14 keypoint locations on each exemplar.
MATCHING:
% Compute shape contexts for test image I.
foreach exemplar E;
[Limbs;,Scores;] = match(FE;,I)
foreach link L, = (I%,1")
foreach exemplar E;
foreach exemplar FEj
D(i,j,w) = Conj{ % See equation (1)
Sols = pynaMmic-soLVE (Limbs, Scores, D, waist)
Sol = min(Sols)
DYNAMIC-SOLVE(Limbs, Unary, Binary,root):
foreach link L, = (root,next)
Solsrec(w) = pynamrc-soLve(Limbs, Unary, Binary, next)
foreach exemplar E;
% Find best set of nodes from Sols,.., while using E; as root.
§ = best(Solsrec, Ei, Binary(root), Unary(root))
Sols(i) = §

return Sols

4 Estimating 3D Configuration

We use Taylor’s method in [22] to estimate the 3D configuration of a body given
the keypoint position estimates. Taylor’s method works on a single 2D image,
taken with an uncalibrated camera.

It assumes that we know:

1. the image coordinates of keypoints (u,v)
2. the relative lengths [ of body segments connecting these keypoints

! Dynamic programming on trees is a well-studied problem in the theory community.
For an early example of such methods in the computer vision literature, refer to [26]



3. a labelling of “closer endpoint” for each of these body segments
4. that we are using a scaled orthographic projection model for the camera

We can then solve for the 3D configuration of the body {(X;,Y:, Z;) : i € keypoints}
up to some ambiguity in scale s. The method considers the foreshortening of each
body segment to construct the estimate of body configuration. For each pair of
body segment endpoints, we have the following equations:

2= (X) — Xo)2 4+ (Y1 — V3)2 + (Z1 — Z»)?
(u1 —u2) = s(X; — Xo)
(Ul — Ug) = 5(1/1 - Y2)
dZ = (Zy — Z»)
= dZ = /1> — ((u1 — u2)? + (v — v2)?)/s?

To estimate the configuration of a body, we first fix one keypoint as the
reference point and then compute the positions of the others with respect to the
reference point. Since we are using a scaled orthographic projection model the X
and Y coordinates are known up to the scale s. All that remains is to compute
relative depths of endpoints dZ. We compute the amount of foreshortening,
and use the user-supplied “closer endpoint” labels from the closest matching
exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scale s,,;, can be estimated from
the fact that dZ cannot be complex.

\/(U,l — U2)2 + (Ul - ’1}2)2
5>
- )
This minimum value is a good estimate for the scale since one of the body
segments is often perpendicular to the viewing direction.

5 Results

5.1 Pose File

We applied our method to the human figures in Eguchi’s pose file collection [27].
This book contains a thorough collection of artist reference photographs of one
model performing typical actions. The book depicts actions such as skipping,
jumping, crawling, and walking. Each action is photographed from about 8 cam-
era angles each, and performed in 2 levels of clothing (casual and skirt).

We selected 18 training images (two from each clothing-action pair), to be
used as exemplars. These exemplars were then used to match with 36 different
test images (four from each clothing-action pair).

The positions of 14 keypoints (hands, elbows, shoulders, feet, knees, hips,
waist and head) were manually labelled on each training image. We automatically



locate the 2D positions of these keypoints in each of our test images, and then
estimate a 3D configuration. Figure 5 shows some example 3D configurations
that were obtained using our method.

Figure 6 shows distributions of error in the location of the 2D keypoints.
Ground truth was obtained through user-clicking. The large errors (especially
for hands and feet) can be attributed to ambiguities between left and right limbs.
In tracking applications, these ambiguities could be resolved by:

1. for each frame returning the K best solutions instead of just the best one
2. exploiting temporal consistency by using an HMM or other dynamic model

5.2 Speed Skating

We also applied our method to a sequence of video frames of an Olympic speed
skater (Figure 7). We chose 5 frames for use as exemplars, upon which we hand-
labelled keypoint locations. We then applied our method for configuration esti-
mation to a sequence of 20 frames. Each frame was processed independently —
no dynamics were used, and no temporal consistency was enforced!

6 Conclusion

In this paper we have presented a simple, yet apparently effective, approach to

estimating human body configurations in 3D. Our method first matches using

2D exemplars, then estimates keypoint locations, and finally uses these keypoints

in a model-based algorithm for determining 3D body configuration. Our method

requires minimal user input, only the locations of 14 keypoints on each exemplar.
There are several obvious directions for future work:

1. The 2D shape matching could make use of additional attributes such as
distances from labelled features such as faces or hands.

2. When video data are available, then estimation can benefit from temporal
context. Human dynamic models are most naturally expressed in joint an-
gle space, and our framework provides a natural way to incorporate this
information in the 3D configuration estimation stage.
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Fig. 5. Example renderings. (a) Original image with located keypoints. (b) 3D render-
ing (green is left, red is right).
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Fig. 7. Frames of speed skater sequence. The top left image shows an example of sample
points extracted using edge detection. The rest of the images show the estimated body
configuration of every 3" frame of the sequence.
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