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Abstract

We relax the long-held and problematic assumption in
shape-from-shading (SFS) that albedo must be uniform or
known, and address the problem of “shape and albedo from
shading” (SAFS). Using models normally reserved for nat-
ural image statistics, we impose “naturalness” priors over
the albedo and shape of a scene, which allows us to si-
multaneously recover the most likely albedo and shape that
explain a single image. A simplification of our algorithm
solves classic SFS, and our SAFS algorithm can solve the
intrinsic image decomposition problem, as it solves a su-
perset of that problem. We present results for SAFS, SFS,
and intrinsic image decomposition on real lunar imagery
from the Apollo missions, on our own pseudo-synthetic lu-
nar dataset, and on a subset of the MIT Intrinsic Images
dataset[15]. Our one unified technique appears to outper-
form the previous best individual algorithms for all three
tasks.

Our technique allows a coarse observation of shape
(from a laser rangefinder or a stereo algorithm, etc) to
be incorporated a priori. We demonstrate that even a
small amount of low-frequency information dramatically
improves performance, and motivate the usage of shading
for high-frequency shape (and albedo) recovery.

1. Introduction
Our work will address what we believe are two of the

primary shortcomings of shape from shading:

1. albedo must be uniform and known.
2. shading is a weak cue for low-frequency information.

We will ignore the problems of mutual illumination and cast
shadows, and we will assume the light source is known.

Determining shape and albedo from a single image is
a difficult, under-constrained, and fundamental problem in
human and computer vision. A human observer perceives
the Mona Lisa neither as paint on a flat canvas nor as a
strange shape with uniform albedo, but instead as a 3D

(a) Input
image

(b) Input depth
(optional)

(c) Output
albedo

(d) Output
depth

(e) Output
shading

Figure 1. Our SAFS algorithm demonstrated on an image of the
moon from Apollo 15. The current best stereo algorithm on this
data[6] is used as a low-frequency prior on depth. Our model cor-
rectly attributes craters to circular indentations of depth, and maria
(dark areas) and ejecta (light areas near craters) to albedo. Depth
is visualized with: brightness ∝ nz , color ∝ depth (red = near,
blue = far).

(a) Input image (b) Ground Truth (c) This paper (d) Retinex[15]

Figure 2. Our SAFS algorithm demonstrated on the intrinsic im-
age decomposition task, using a subset of a test-set image from
the MIT intrinsic images dataset. Top row is shading, bottom row
is albedo (reflectance). Our algorithm beats Retinex (the previous
best algorithm on this dataset) on both error metrics, and produces
qualitatively better looking results. Note: our algorithm actually
produces a depth-map (not pictured), and our “shading” is a ren-
dering of that depth-map.

woman with light skin and dark hair. This naturally sug-
gests a statistical formulation of the problem, where certain
shapes and albedos are more likely than others. We will ad-
dress the problem of recovering the most likely albedo and
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shape that explain a single image. Using techniques from
natural image statistics, we will present novel models for
natural albedo images and natural depth maps, whose pa-
rameters we learn from training data. Using a novel exten-
sion to existing optimization methods we can then produce
a depth map and albedo map which maximizes the likeli-
hood of both models.

The second shortcoming of SFS that we will address is
that shading is a poor cue for low-frequency (coarse) depth.
Shading is directly indicative of only the depth of a point
relative to its neighbors: fine-scale variations in depth pro-
duce sharp, localized changes in an image, while coarse-
scale variations produce very small, subtle changes across
an entire image. Bas relief sculptures take advantage of this
by conveying the impression of a rich, deep 3D scene, using
only the shading produced by a physically shallow object.

We will address this fundamental difficulty by circum-
venting it, and constructing a framework in which a low-
frequency prior on shape (specifically, some low-resolution
observation of depth) can be integrated a priori into SAFS
and SFS, using a multiscale representation of depth. This
framework is complementary to other successes in shape
estimation, such as stereo[29, 34], laser range finders, etc,
which tend to produce depth maps that are inaccurate at fine
scales. Our framework is also compatible with the idea that
3D shape estimation is not entirely bottom-up, but that prior
top-down information is used.

We will use multiscale representations of depth and
albedo (Laplacian[7] and Gaussian pyramids, respectively),
which allow us to integrate low-frequency depth informa-
tion, and to produce multiscale generalizations of existing
natural image statistics models. Our pyramid representa-
tion of depth also allows for an effective coarse-to-fine op-
timization algorithm, based on conjugate gradient descent.
We will demonstrate that these benefits of multiscale repre-
sentations are crucial for accurate reconstruction.

Our work relates to “intrinsic images”, which were de-
fined by Barrow and Tenenbaum to include the depth, ori-
entation, reflectance, and illumination of an image[1]. Most
work on “intrinsic images” has focused solely on decom-
posing an image into shading and albedo[15]. We will ad-
dress the more complete problem of recovering shape (and
therefore shading) and albedo, thereby reunifying “intrinsic
images” with SFS.

A degenerate case of our SAFS algorithm solves stan-
dard SFS while incorporating prior low-frequency informa-
tion. We present SAFS and SFS results with varied amounts
of prior low-frequency information, and show that our SFS
algorithm can recover high-frequency shape extremely ac-
curately, while SAFS can recover high-frequency albedo
and shape somewhat less accurately, and that accuracy is
largely a function of the amount of prior low-frequency in-
formation available.

We will demonstrate SAFS and SFS on real and pseudo-
synthetic lunar imagery: images from the Apollo 15 mis-
sion, and Lambertian renderings of laser scans of Earth’s
terrain with real albedo maps of the moon. For the
Apollo imagery, we use the output of a contemporary stereo
algorithm[6] as our low-frequency observation of depth.
See Figure 1 for our results on one Apollo image.

We also present results on a subset of the MIT In-
trinsic Images dataset[15]. Our algorithm substantially
outperforms the grayscale Retinex algorithm, which had
previously been the best algorithm for the (single image,
grayscale) intrinsic image decomposition task. See Figure 2
for our results on a test-set image.

In Section 2 we review prior work. In Section 3 we for-
mulate our problem as an optimization problem, introduce
our priors over albedo and shape, and present our optimiza-
tion algorithm. In Section 4 we review metrics (and present
a novel metric) for evaluating the output of our system and
tuning hyperparameters. In Section 5 we introduce a sim-
plification of our model which solves SFS while (option-
ally) integrating low-frequency depth information. In Sec-
tion 6 we present results for SAFS and SFS on our real and
pseudo-synthetic lunar datasets, and in Section 7 we present
results on the MIT intrinsic image dataset. In Section 8 we
conclude.

2. Prior work
Shape from shading has been the focus of much research

since it’s formulation by Horn[17]. Many algorithms have
been introduced (well surveyed in [5, 38]) and many theo-
retical results regarding ill-posedness and convergence have
been presented. Our rendering formulation is similar to oth-
ers which optimize over a linearized depth map[31, 35].
Our coarse-to-fine optimization is similar in spirit to mul-
tiresolution or multi-grid schemes[8, 18, 31], though our
focus is on placing priors on multiscale representations of
depth.

The high-frequency nature of shading has been studied in
the human and computer vision communities for decades.
Blake and Zisserman note that shading is a useful cue for
high-frequency depth, and that stereo is better suited for re-
covering low-frequency depth [4]. Cryer et al. demonstrate
that integrating the output of SFS and stereo leads to accu-
rate reconstructions where SFS alone fails [9]. Koenderink
showed that humans make errors in estimating coarse depth
when using only shading[21]. Mamassian et al. suggest that
contour cues dominate shading cues in the recognition of
simple geometric shapes[23]. This view is consistent with
ours, in that contours can be used as a low-frequency prior
on shape, and shading can provide high-frequency informa-
tion. That being said, much of our data (see Figure 1) lack
geometric contour cues, necessitating the use of shading.

Much work has been done to describe and eliminate
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Figure 3. An overview of the calculation of our loss function f safs(ZL). In the upper left we have fZ (ZL), the negative log-likelihood of a
4-connected MRF over the ZL (the Laplacian pyramid representation of depth), and a Gaussian prior relating the lowpass residual channel
of ZL with Z0, a coarse observation of depth. In the upper right we have fρ

`
G

`
ρ(L−1(ZL))

´´
, the negative log-likelihood of a multiscale

“Field of Experts”-like model over a Gaussian pyramid representation of the albedo implied by ZL. The rest of the figure represents the
rendering machinery that allows us to calculate ρ(L−1(ZL)), the albedo implied by ZL.

the ill-posedness of SFS. To address the “Bas-Relief” am-
biguity of Belhumeur et al. [2], we assume the direction
of light is known. Prados and Faugeras have also shown
that concave/convex ambiguities arise unless illumination
is attenuated[26], and Forsyth has explored mutual illumi-
nation and interreflections[12, 13], all issues which we do
not address.

The earliest work in intrinsic images is Land and
McCann’s Retinex theory[22] (later made practical by
Horn[16]), which classifies image gradients as shading
or albedo by their magnitude. Later techniques explored
Bayesian modeling of image gradients[14], learning classi-
fiers on pyramid coefficients[3], and learning filters to clas-
sify image gradients[32, 33]. This line of work is similar to
ours in that it involves classifying or modeling local filter
output, but all such techniques only produce shading and
albedo maps, and all have the severe disadvantage that they
do not or cannot reason about underlying shape, while we
explicitly consider shape.

There is some work on the SAFS problem, all of which
must make assumptions to constrain the problem, such as:
piece-wise constant albedo (equivalent to Retinex) [24, 28],
multiple images [28], or symmetry in shape and albedo[37].
We use a single, non-symmetric image, and rely only on
statistical regularities in natural albedo and depth maps.

There is a wealth of work on the statistics of natural im-
ages. Huang and Mumford studied the statistics of a vari-
ety of representations of natural images[20], and Huang et
al. found similar trends in range images[19]. We use the
former assumption to regularize albedo (as albedo images
are a special case of natural images), and the latter assump-
tion to regularize shape. Simoncelli demonstrated descrip-
tive models for adjacent coefficients in wavelet decomposi-

tions of images[30], and Portilla et al.[25] demonstrated that
Gaussian scale mixtures (GSM) are effective models for
denoising such decompositions, an insight which informs
our multiscale priors for shape and albedo. Our prior on
albedo resembles a multiscale version of the “Field of Ex-
perts” [27] with GSM experts[36], an effective and general
model for natural image statistics, although we used simple
hand-crafted filters rather than learned filters.

3. Algorithm
Our problem formulation for “high-frequency shape and

albedo from shading” is:

Input: image I, light direction L, [ coarse depth Z0]
Output: complete depth Ẑ, albedo map ρ̂

We will use Z(x, y) and Ix,y to refer to the depth and inten-
sity of the image at (x, y). Z0 is an optional low-frequency
observation of depth. We define Sx,y(Z) as the Lambertian
rendering of Z at (x, y), illuminated by L. Lambertian re-
flectance states that I = ρ · S(Z). We can therefore define
the albedo at (x, y) implied by Z, I and L:

ρx,y(Z) =
Ix,y

Sx,y(Z)
(1)

Additionally, we define L(·), which constructs a Lapla-
cian pyramid from an image, L−1(·), which reconstructs
an image from a Laplacian pyramid, and G(·), which con-
structs a Gaussian pyramid from an image.

We will construct an optimization problem in which we
optimize over ZL, a Laplacian pyramid representation of
the depth-map of a scene, to maximize the likelihood of a
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prior over G
(
ρ

(
L−1(ZL)

))
, the Gaussian pyramid repre-

sentation of the albedo implied by ZL. We will additionally
regularize our optimization by placing a prior over ZL. We
optimize over the pyramid ZL rather than the image Z be-
cause it allows for descriptive, multiscale priors over depth,
and for an effective, multiscale optimization algorithm. Us-
ing a pyramid representation of albedo allows us to apply
priors to multiple scales, which dramatically improves per-
formance. Our final loss function is:

f safs(ZL) = fρ
(
G
(
ρ(L−1(ZL))

))
+ fZ(ZL) (2)

The calculation of this loss function is illustrated in Fig-
ure 3. The output of our algorithm is:

Ẑ = L−1
(
arg minZLf safs(ZL)

)
, ρ̂ = ρ(Ẑ). (3)

In Section 3.1 we formally define Sx,y(Z). In Sec-
tion 3.2 we define fρ which is a potential on the filter bank
response of a multiscale representation of albedo. In Sec-
tion 3.3 we define fZ , which consists of a multiscale MRF
and a method of incorporating a low-frequency observation
of depth. In Section 3.4 we introduce a novel optimization
method for optimizing f safs based on conjugate gradient
descent.

3.1. Rendering procedure

We will describe our technique for linearizing and
then rendering Z with Lambertian reflectance under ortho-
graphic projection. This particular linearization is not cru-
cial for SAFS, but it does improve performance. Our tech-
nique has two nice advantages over standard linearization:
an (n × n) depth map produces an (n × n) image as op-
posed to an (n− 1×n− 1) image, and the normal at (x, y)
is a function of Z and all adjacent entries, as opposed to just
two.

We treat pixel (x, y) as being bounded by four points
whose depths we calculate using bilinear interpolation and
extrapolation. We then render Sx,y(Z) by rendering and
then averaging the two triangles formed by those four
points. This requires the unit normals of each triangle:

n+
x,y(Z) ∝

 Z(x− 1/2, y − 1/2)− Z(x + 1/2, y − 1/2)
Z(x− 1/2, y − 1/2)− Z(x− 1/2, y + 1/2)

1


n−x,y(Z) ∝

 Z(x− 1/2, y + 1/2)− Z(x + 1/2, y + 1/2)
Z(x + 1/2, y − 1/2)− Z(x + 1/2, y + 1/2)

1


We then render Z with Lambertian reflectance:

Sx,y(Z)= 1
2

(
max(0, L·n+

x,y(Z)) + max(0, L·n−x,y(Z))
)

.
(4)

(a) Filter bank (b) Filter responses

Figure 4. On the left, we have the filter bank we use for
G

`
ρ(L−1(ZL))

´
, the Gaussian pyramid representation of albedo.

On the right, we have log-histograms of the responses for the filter
bank on test-set albedos (blue), on test-set images (red), and the
GSM model we learn (black). Note that the distribution of filter
response on albedo images is different than that of natural images
(shading × albedo) — albedo is much more kurtotic and heavy-
tailed. This difference is crucial to the success of our technique.

3.2. Priors over albedo

As a model for albedo, we will construct a filter bank
(Figure 4(a)) of oriented edge and bar filters, and place
Gaussian Scale Mixture[25] (GSM) potentials on the fil-
ter responses. This model resembles the “Field of Experts”
model (FoE) in [36], but we do not learn our filter bank. We
experimented with many sets of hand-designed and learned
filters (using the basis rotation technique of [36]), but this
simple 3× 3 oriented bar and edge filter bank worked best.
The GSM potentials are learned from training albedo data
using Expectation Maximization.

Unlike other FoE-like models, we apply our model to a
Gaussian pyramid rather than an image. This is equivalent
to having an expanded, multi-scale filter bank. We do this
because, as opposed to tasks such as image denoising where
the image is only corrupted at the finest scale, in SAFS low-
frequency errors in the depth-map may corrupt the implied
albedo map at low-frequency scales.

We will use the negative log-likelihood of this multi-
scale FoE-like model as fρ(ρG) in Eq. 2 (where ρG =
G
(
ρ(L−1(ZL))

)
, the Gaussian pyramid representation of

the albedo implied by ZL):

fρ(ρG) = −
K∑

k=1

λρ
k

∑
c∈Cρ

k

4∑
i=1

log

 M∑
j=1

αijk · N
(
JT

i x(c);µik, σ2
ijk

)
(5)

Where K is the number of levels of the Gaussian pyramid,
Cρ

k are the maximal cliques (3× 3 patches) of the k’th level
of ρG , x(c) is the 3×3 patch in ρG corresponding to clique c,
and Ji is the i’th filter, of which there are 4. Regarding each
GSM, αijk are the mixing weights of Gaussian ik (of which
there are M = 50), each of which has variance σ2

ijk, and all
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(a) A bivariate GSM model (b) the data used to train that model

Figure 5. The bivariate GSM used in one scale of our MRF model
over adjacent coefficients in ZL (the Laplacian pyramid represen-
tations of depth), and the data used to train that model.

of which have mean µik. λρ
k are the hyperparameters that

weight each scale of the prior, and are tuned to maximize
SAFS performance on the training set.

Our filter bank and the GSM potentials for the finest
scale of ρG on the albedo maps in the MIT Intrinsic Images
dataset is shown in Figure 4. Consider the insight of [36]
concerning filter selection for image denoising: that filters
should fire rarely on natural images but frequently on all
other images. For our task, this insight translates to: filters
should fire infrequently on albedo images, but frequently
on natural images (albedo × shape). Our filter bank has
this property, as evidenced by the highly kurtotic distribu-
tion of albedo compared to the less kurtotic distribution of
natural images. Because variations in Z tend to be bumps
and creases, and because bumps and creates in shapes cre-
ate bars and edges in the resulting inferred albedo ρ(Z),
these filters tend to fire on (and therefore penalize) shape-
like variations in inferred albedo.

3.3. Priors over shape

We have two goals when constructing priors over the
Laplacian pyramid representation of depth ZL: 1) we would
like the residual low-pass level of the pyramid to stay close
to our low-pass observation Z0 (which is assumed to be the
same size as ZL[K], the top level of ZL), and 2) we would
like to regularize ZL using a statistical model learned from
example depth maps. The first goal is accomplished by
assuming that Z0 is a noisy observation of ZL[K] (where
noise is Gaussian and i.i.d.) and the second goal is accom-
plished by maximizing the log-likelihood of ZL under a 4-
connected multiscale MRF, in which each edge potential is
a bivariate Gaussian Scale Mixture.

We will use the negative log-likelihood of these priors as
fZ(ZL) in Eq. 2:

fZ(ZL) = λZ
K‖ZL[K]− Z0‖22 −

K−1∑
k=1

λZ
k

∑
c∈Ck

log

 M∑
j=1

αjk · N
(
x(c);µk, sjk · Σk

) (6)

This is similar to Eq. 5, but we have K−1 bivariate GSMs
(each with a single covariance matrix Σk) instead of fil-
ter banks, and a squared-error term against Z0 at level K.
λZ

k are the hyperparameters for each level, and are tuned to
maximize SAFS performance on the training set.

One bivariate GSM model is visualized in Figure 5, with
the training data used to learn that model. Our model cap-
tures the correlation of adjacent coefficients and the heavy-
tailed, kurtotic nature of the distribution.

3.4. Optimization

We will optimize over ZL using nonlinear conjugate gra-
dient descent (CG). The properties of our problem require
two modifications to standard CG:

It is possible to construct multiple Laplacian pyramids
that reconstruct into identical images. For example, one
could construct a pyramid in which the entire image is in
the high-pass channel of the pyramid. This is a problem,
as our priors assume that ZL is “valid” — that all signal
of a certain frequency is contained only in a certain level
of the pyramid. We therefore require a guarantee that, in
optimization, ZL is always valid.

An “invalid” pyramid ZL can be made valid by recon-
structing an image, and then constructing a pyramid from
that reconstructed image (both using standard methods[7]):

V(ZL) = L
(
L−1(ZL)

)
. (7)

It can be demonstrated that V(x) is a linear system, and
that if ZL is valid, V(ZL) = ZL. Therefore, given some
valid Laplacian pyramid ZL, some vector x of equal size,
and some scalar α, V(ZL + αx) = ZL + αV(x). There-
fore, using V(∆ZL) in place of ∆ZL in CG ensures that ZL
is always in the space of valid Laplacian pyramids, as the
conjugate direction is a linear combination of gradients.

Optimizing in the space of valid Laplacian pyramids
enables our second modification to CG, in which we do
coarse-to-fine optimization. This prevents coarse-scale im-
age features from being wrongly attributed to fine-scale
shape features. We iterate over the K levels of Lz from K
to 1, and at each iteration we optimize over levels k through
K until convergence. We optimize over levels k through K
while still guaranteeing a valid pyramid by setting ∆ZL at
levels 1 through k − 1 to 0 before calculating V(∆ZL).

Pseudocode for our modified CG can be found in Algo-
rithm 1. Changes to standard CG are indicated with color.
An animation of Z and ρ during optimization can be found
at http://www.eecs.berkeley.edu/∼barron/.

Regarding implementation, efficient CG requires ef-
ficient calculation of the f safs(ZL) of ∇ZLf safs(ZL).
Calculating f safs(ZL) is straightforward, but calcu-
lating ∇ZLfρ

(
G
(
ρ(L−1(ZL))

))
requires these non-

obvious properties of Laplacian and Gaussian pyramids:
∇f(L(·)) = G(∇f (·)), and ∇f(·) = L−1(∇f (G(·))).
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Algorithm 1 Laplacian Pyramid Conjugate Gradient.
Colors indicate differences from standard nonlinear CG
(Blue = coarse-to-fine, red = valid Laplacian pyramid)
1: x0 ← L

`
Z0

´
2: for k = K to 1 do
3: Λ0 ← −∇xf(x0)
4: repeat
5: ∆n ← −∇xf(xn)
6: ∆n[level < k]← 0
7: ∆n ← L−1(L(∆n))
8: compute βn // using Polack-Ribiere
9: Λn ← ∆n + βnΛn−1

10: αn ← arg minαn f(xn + αnΛn) // linesearch
11: xn+1 ← xn + αnΛn

12: until converged
13: end for

4. Evaluation
Choosing a good error metric is non-trivial, and has been

discussed at great length [9, 18, 31]. We choose our error
metrics for SAFS and SFS under two goals: accurate shape,
and accurate appearance under different illuminations. For
the first goal we use mean-squared error (MSE) between Z
and the true Z∗:

Z-MSE(Z,Z∗) =
1
n

∑
x,y

(Z(x, y)− Z∗(x, y))2 . (8)

Z-MSE alone does not address our second goal, as very
small errors in Z can create large errors in S(Z) and ρ(Z).
We considered using the error between the true image and
our predicted image, the gradient error [31], or the error
in the recovered albedo, but none of these directly satisfy
our goal that Z “look good” when rendered under different
illuminations. We therefore propose a novel metric that is
an approximation of the total MSE between all renderings
of Z and ρ, and Z∗ and ρ∗, under all lighting conditions.

First, we will define the effective normal at pixel (x, y):

nx,y(Z) =
1
2
(n+

x,y(Z) + n−x,y(Z)) . (9)

After omitting max(0, ·) from Lambertian reflectance, we
can define our error metric at a single pixel:∫ (

ρx,y(L·nx,y(Z))−ρ∗x,y(L·nx,y(Z∗))
)2

dL . (10)

We define v = ρx,ynx,y(Z) − ρ∗x,ynx,y(Z∗). Integrating
over L on only the camera-facing hemisphere (L3 ≥ 0),
Eq. 10 reduces to:

π2

4

(
(v1 + v2)

2 + 2v2
3

)
. (11)

We define I-MSE(Z,Z∗) as the mean of Eq. 11 over all
(x, y), and use this as our error metric for visual fidelity.

When tuning the hyperparameters (λ) of our model, we
evenly minimize both error metrics by minimizing:∑

Z-MSE(Ẑ, Z∗)∑
Z-MSE(Z0, Z∗)

+
∑

I-MSE(Ẑ, Z∗)∑
I-MSE(Z0, Z∗)

. (12)

Where the summations are over the images in our training
set.

5. Shape from shading
Our SAFS problem formulation can be reduced to one

that solves SFS, while allowing low-frequency depth infor-
mation to be integrated. The problem formulation for “high-
frequency shape from shading” is:

Input: image I, light direction L, [ coarse depth Z0]
Output: complete depth Ẑ

Instead of placing a prior over implied albedo, here
we will simply minimize the squared error between
G
(
S(L−1(ZL))

)
and G(I) (weighted appropriately at each

scale). This can be interpreted as a special case of SAFS in
which albedo is assumed to be 1, or as a multiscale gener-
alization — in both Z and I — of other SFS methods based
on linearizing a depth-map[31, 35]). Our loss function is:

f sfs(ZL)=
K∑

k=1

λI
k‖G

(
S(L−1(ZL))

)
[k]− G(I)[k]‖22 + fZ(ZL) .

(13)

6. Results: Lunar SAFS
We will first demonstrate our SAFS and SFS algo-

rithms on real and pseudo-synthetic lunar imagery. Our
real lunar data are images from the Apollo 15 mission
(for which we have no ground-truth) with a contemporary
stereo algorithm[6] providing our low-frequency depth Z0.
Our pseudo-synthetic lunar dataset is laser scans of the ter-
rain near Puget Sound1, and lunar albedo maps from the
Clementine mission2, rendered under orthographic projec-
tion with Lambertian reflectance. In SFS we use the same
data with ρ = 1. The dataset is 40 images (20 training,
20 test), each 288×288 pixels (we only use the innermost
256×256 pixels when evaluating error or visualizing). In
the high-frequency case, K = 4, and Z0 is Z∗ downsam-
pled by a factor of 1/64 in area, with added Gaussian noise
(σ = 1). We train our priors over albedo and shape on the
entire training set, but for efficiency we use only 4 training
images when optimizing over the λ hyperparameters.

As baselines for SAFS, we will use two methods to sep-
arate our images into shading and albedo components (the

1www.cc.gatech.edu/projects/large models/ps.html
2nssdc.gsfc.nasa.gov/planetary/clementine.html
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(a) Input image I (b) Input depth Z0

(c) True depth Z∗ (d) Our depth Ẑ (e) Z-MSE, I-MSE

(f) True albedo ρ(Z∗) (g) Our albedo ρ(Ẑ) (h) 3×(ρ(Ẑ) - ρ(Z∗))

Figure 6. High Frequency (K = 4) SAFS output on a test-set im-
age. Depth is visualized as in Figure 1. Error in 6(e) is visualized
with (Red ∝ Z-MSE(Ẑ, Z∗), Blue ∝ I-MSE(Ẑ, Z∗)).

grayscale Retinex implementation of [15], and Tappen et
al.’s technique in [33]), and we then use our SFS algorithm
(the best performing algorithm on this dataset) on the recov-
ered shading. As baselines for SFS, we will use Falcone and
Sagona’s method[11] and Polynomial SFS[10]. For both
tasks, we also present two degenerate cases of our algo-
rithm: a “single scale” model (K = 1) with smoothness
priors over Z, and a multiscale model with no smoothness
priors over Z. The “single scale” model is effectively an
improved version of Tsai and Shah’s method[35], which
produces results that are comparable to many other SFS
techniques[38] (we tried Tsai and Shah’s method itself, but
our baseline outperformed it by a large margin). In all non-
multiscale baselines, we incorporate Z0 by using it as an
initialization for Lz , and in post-processing by using Lapla-
cian pyramids to replace the K’th level of Ẑ with Z0 (sim-
ilar to [9]).

Tables 1 and 2 show results for SAFS and SFS with dif-
ferent amounts of prior low-frequency depth. Many base-
line techniques produce worse depth maps than they began
with. Our single-scale algorithm dramatically underper-
forms the multiscale algorithm, demonstrating that multi-
scale representation and optimization is more effective than
regularizing a flat representation. Multiscale smoothness
priors over Z do improve performance, though the improve-

Table 1. SAFS Results
Algorithm High Frequency Complete

Z-MSE I-MSE Z-MSE I-MSE
Retinex[15] + SFS 131% 2 51% 0.02 607% 364 103% 0.1
Tappen[33] + SFS 326% 4 242% 0.1 641% 384 230% 0.2
This paper (single scale) 25% 0.3 37% 0.02 94% 56 66% 0.07
This paper (no Z smoothness) 15% 0.2 30% 0.01 93% 56 75% 0.08
This paper (all priors) 5.4% 0.06 9.8% 0.005 92% 55 62% 0.06

Table 2. SFS Results
Algorithm High Frequency Complete

Z-MSE I-MSE Z-MSE I-MSE
Polynomial SFS[10] 10% 0.1 37% 0.07 61% 37 30% 0.2
Falcone Sagona[11] 54% 0.7 120% 0.2 94% 56 113% 0.6
This paper (single scale) 41% 0.5 77% 0.2 74% 44 76% 0.4
This paper (no Z smoothness) 3.2% 0.04 3.6% 0.007 58% 35 33% 0.2
This paper (all priors) 0.5% 0.007 1% 0.002 45% 27 29% 0.2

SAFS and SFS results with and without prior low-frequency information.
“High Frequency” correspond K = 4, where Z0 was created by down-
sampling Z∗ by a factor of 1/64 in area. In the “Complete” case, Z0 = 0,
K = 7, and Z-MSE is shift-invariant. Errors are shown relative to Z0 in
percent, and in absolute terms.

Table 3. Intrinsic Image Results
Algorithm LMSE I-MSE

GR-Retinex[15] + SFS 0.118 2.205
This paper 0.079 0.791

Performance on our test-set of the MIT intrinsic images dataset[15]. We
report LMSE, the error metric proposed by [15], and our I-MSE error
metric (note that LMSE is not dependent on SFS). We outperform the
grayscale Retinex algorithm (the previous best algorithm for this dataset)
on both error metrics by a large margin.

ment is most significant in the “high frequency” case.
When the prior low-frequency information is removed

in the “Complete” case, our algorithm’s advantage over the
baselines lessens. In terms of absolute error all algorithms
perform poorly. This reflects the difficulty in using shading
to estimate low-frequency depth (and therefore albedo), and
validates our “high frequency” problem formulation. Still,
our model consistently outperforms all baselines even when
given no low-frequency information, especially in SAFS.

7. Results: Intrinsic image decomposition
We evaluate our SAFS algorithm on the intrinsic images

task using the MIT Intrinsic Images dataset[15]. We com-
pare against grayscale Retinex, the current best algorithm
on this dataset ([32] performs slightly better).

Comparing our algorithm to Retinex is difficult, as we
assume the light direction is known, and that ground-truth
shape is available for training. This necessitated the use
of photometric stereo (each object in the dataset was im-
aged under multiple light directions) to estimate ground-
truth depth maps for each object and the illumination for
each image (modeled with a directional light and an ambi-
ent term). These ground-truth depths allow us to train priors
on Z, and allow us to calculate I-MSE. Ground truth depth
could also be used to produce low-frequency observations
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of depth, but this would give us an unfair advantage. Only
the estimated light directions are used as input by our SAFS
algorithm.

We selected 5 training images (cup1, panther, paper1,
squirrel, teabag2) and 5 test images (cup2, deer, paper2,
raccoon, teabag1) from the dataset. We selected only re-
gions of the images that did not contain object boundaries
or shadowed regions, which our algorithm cannot handle.
In Table 3 we present results for grayscale Retinex, and our
SAFS algorithm. We beat the grayscale Retinex algorithm
(the previous best algorithm for this dataset) by a wide mar-
gin: 33% in LMSE, the error metric of [15], and 64% in
I-MSE. LMSE considers only albedo and shading, while
I-MSE considers albedo and shape, and therefore shading.
An example of our algorithm compared to Retinex can be
see in Figure 2.

8. Conclusion
We have addressed two of the fundamental issues that

limit shape-from-shading: the assumption of a uniform
or known albedo, and the difficulty in estimating low-
frequency shape. We have presented an algorithm that can
recover shape and albedo from a single image better than
any previous algorithm, on a challenging dataset that we
have presented and on a subset of the MIT Intrinsic Images
dataset. Our algorithm can incorporate low-frequency pri-
ors on shape, and we have shown that accuracy in SAFS
and SFS is largely dependent on such low-frequency infor-
mation. A simplification of our algorithm outperforms clas-
sic SFS algorithms, especially when given low-frequency
information.

Our technique depends entirely on our novel assumption
of a natural albedo and shape, which appears to be much
more effective than past algorithms [3, 15, 32, 33] which as-
sume properties of albedo and shading, and never consider
shape. This difference allows us to outperform the previous
best intrinsic image algorithms.

We have demonstrated that by unifying SFS and intrinsic
image decomposition into the more comprehensive problem
of SAFS, we produce significantly better results than if we
address either problem independently.
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