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Abstract

We address the problem of recovering shape, albedo, and
illumination from a single grayscale image of an object,
using shading as our primary cue. Because this problem
is fundamentally underconstrained, we construct statistical
models of albedo and shape, and define an optimization
problem that searches for the most likely explanation of a
single image. We present two priors on albedo which en-
courage local smoothness and global sparsity, and three
priors on shape which encourage flatness, outward-facing
orientation at the occluding contour, and local smoothness.
We present an optimization technique for using these pri-
ors to recover shape, albedo, and a spherical harmonic
model of illumination. Our model, which we call SAIFS
(shape, albedo, and illumination from shading) produces
reasonable results on arbitrary grayscale images taken in
the real world, and outperforms all previous grayscale “in-
trinsic image”-style algorithms on the MIT Intrinsic Images
dataset.

1. Introduction
We wish to take only a single grayscale image of an

object and estimate the shape, albedo, and illumination
that produced that image (Figure 1). This “inverse optics”
problem is terribly underconstrained: the space of albedos,
shapes, and illumination that reproduce an image is vast.

But of course, not all albedos and shapes are equally
likely. Past work has demonstrated that simple statistics
govern natural images [8, 23], and we will construct models
of the similar statistics that can be found in natural albedo
and shape. Our algorithm is simply an optimization prob-
lem in which we recover the most likely shape, albedo, and
illumination under to our statistical model, such that a sin-
gle image is exactly reproduced. Our priors are effective
enough that shape, albedo, and illumination can be recov-
ered from real-world images, and are general enough that
they work across a variety of objects: a single model learned
on teabags and squirrels can be applied to images of cof-
fee cups and turtles. Our model can be seen in Figures 1, 2

Figure 1. Our algorithm takes only a single masked grayscale im-
age as input (shown on the left) and produces as output a depth
map, albedo map, shading image, and spherical harmonic illu-
mination model. These images were taken by the authors with a
cellphone camera in uncontrolled indoor and outdoor illumination
conditions. All images and results in this paper were produced us-
ing the same piece of code with the same parameter settings. The
“shading” image is a rendering of the recovered depth under the
recovered illumination. Depth is shown with a pseudo-color visu-
alization (red is near, blue is far). Many more similar results can
be found in the supplementary material.
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(a) Input Image &
Illumination

(b) Ground Truth (c) Our Model (d) Retinex [16, 11]
+ SFS

(e) Tappen et al.
2005 [28] + SFS

(f) Barron & Malik
2011 [2]

(g) J. Shen et al.
2011 [26] + SFS

(h) L. Shen & Yeo
2011 [27] + SFS

Figure 2. A visualization of our technique, and others, for the task of recovering shading, albedo, and shape, given a single grayscale image
and a known illumination. We benchmark against the other algorithms on the known-illumination task because no other algorithm we are
aware of is capable of recovering shape, albedo, shading, and illumination for general objects.

and 7, and in the supplementary material.

The problem we address was first posed to the com-
puter vision community as the “intrinsic images” problem
[3], though it had been studied earlier in other fields as the
problem of lightness constancy [10]. Over time the intrin-
sic images problem has been simplified to the problem of
separating an image into shading and albedo [11, 16, 19],
which has seen some recent progress [26, 27, 28] mostly
by relying on color as a cue. However, none of these al-
gorithms work well on grayscale images (see Figure 2, Ta-
ble 1), nor do they allow shape (with the exception of [2]),
or illumination to be directly recovered. Our model relates
to the classic shape-from-shading problem [15] as we rely
on shading as a cue for depth, but SFS techniques gener-
ally require albedo and illumination to be known, which we
do not. Shape-from-contour is another classic single-image
shape recovery technique [7, 18] which we build upon.

A competing approach to single-image techniques is to
better constrain the problem with additional data. Instances
of this approach are photometric stereo [30], structure from
motion [12], and inverse global illumination [31]. All these
techniques depend on multiple observations, and they all
break down when given only a single image. Other work
has explored recovering the spatial layout of a scene from
a single image [14, 25], but these techniques do not re-
cover albedo or illumination, and the recovered shape is
very coarse. Morphable models [6] recover shape, albedo,
and illumination, but require extremely specific models of
the objects being estimated, and therefore do not work for
general objects.

We build heavily on the problem formulation of Barron
and Malik [2], which addressed a very constrained case of
our problem. Their model required that a low-frequency
observation of shape be known and that illumination be
known, two fundamental limitations that prevent the tech-

nique from being useful “in the wild”. This paper can be
viewed as an extension to that work in which the priors on
shape and albedo are dramatically improved, the require-
ment of low-frequency shape information is relaxed (due to
the strength of our priors), and illumination is not required
to be known.

Let us present a modification to the problem formula-
tion of [2]. Assuming Lambertian reflectance and ortho-
graphic projection, given a log-albedo map A, a depth-map
Z, and illumination L, the log-intensity image I is defined
as I = A + S(Z,L). The function S(Z,L) is the “log-
shading image” of Z with respect to L: it linearizes Z into
a set of normals and renders those normals using L, a model
of spherical harmonic illumination (detailed in the supple-
mentary material). Now let us assume that the image I and
illumination L have been observed, but Z and A are un-
known. This problem is underconstrained, so we impose
priors on Z and A and search for the most likely shape and
albedo that explain image I . This is the same as minimiz-
ing the sum of g(A) and f(Z), which will be defined later
as being (loosely) equivalent to the negative log-likelihoods
of Z and A respectively. The optimization problem is:

minimize
Z,A

g(A) + f(Z) (1)

subject to I = A+ S(Z,L)

This is the same “shape and albedo from shading” (SAFS)
formulation as in [2], but with different priors, a different
rendering engine, and formulated in log-intensity space.

We will present g(A), two priors1 on albedo: one which
encourages piecewise-smoothness by placing heavy-tailed

1Throughout this paper we use the term “prior” loosely. We refer to
loss functions or regularizers on Z or A as “priors” because they have an
interpretation as the unnormalized negative log-likelihood of some statisti-
cal model. We refer to minimizing entropy as a “prior”, which is again an
abuse of terminology. Our occluding contour “prior” requires first observ-
ing the silhouette of an object, and is therefore a posterior, not a prior.



distributions on the multiscale gradient norm of log-albedo,
and one which encourages a low entropy in the marginal
distribution of log-albedo across all scales of an entire im-
age. We then present f(Z), three priors on shape: one
which encourages fronto-parallel flatness (primarily to ad-
dress the bas-relief ambiguity [4]), one which informs the
surface orientation near an object’s occluding contour, and
one which encourages a novel measure of smoothness by
placing heavy-tailed distributions on the multiscale gradi-
ent norm of the mean curvature of shape. We then extend
the problem formulation in Equation 1 to present a novel
framework for recovering illumination in addition to shape
and albedo, using only our priors.

2. Priors on Albedo

We present two priors on albedo, one which encourages
local piece-wise smoothness, and one which encourages
albedo across the image to be composed (approximately)
of a small number of values.

Our priors are on the differences of log-albedo, which
makes them equivalent to priors on the ratios of albedo.
This makes intuitive sense, as albedo is defined as a ratio
of reflected light to incident light, but is also crucial to the
success of our algorithm: Consider the albedo-map ρ im-
plied by log-image I and log-shading S(Z,L), such that
ρ = exp(I − S(Z,L)). If we were to manipulate Z or L
to increase S(Z,L) by some constant α across the entire
image, then ρ would be divided by exp(α) across the entire
image, which would accordingly decrease the differences
between pixels of ρ. Therefore, if we placed priors on the
differences of albedo (as in [2]) it would therefore be pos-
sible to trivially satisfy our priors by manipulating shape or
illumination to increase the intensity of the shading image.
However, in the log-albedo case A = I − S(Z,L), increas-
ing all of S by α (increasing the brightness of the shading
image) simply decreases all of A by α, and does not change
the differences between log-albedo values. Priors on the
differences of log-albedo are therefore invariant to scaling
of illumination or shading, which means they behave simi-
larly in well-lit regions as in shadowed regions, and cannot
be trivially satisfied.

2.1. Smoothness

Albedo tends to be piecewise smooth — or equivalently,
variation in albedo tends to be high-frequency and sparse.
This is the insight that underlies the Retinex algorithm [11,
16, 19], and informs more recent intrinsic images work [2,
26, 27, 28].

Building on this idea, we use a simplification of the
model of [2] (a multiscale Field-of-Experts-like model on
albedo) and place heavy-tailed distributions on the gradient

(a) ‖∇A‖ at different scales (b) ‖∇H(Z)‖ at different scales

Figure 3. The log-likelihoods of Gaussian scale mixtures learned
on ‖∇A‖ and ‖∇H(Z)‖ at different scales, using the training set
of our dataset. We see similar heavy-tailed distributions as have
been observed in natural image statistics [8, 23]. These distribu-
tions are the only learned parameters in our entire model.

norm of log-albedo at multiple scales:

gs(A) =

K∑
k=1

4k−1
∑
x,y

c
(
‖∇G(A, k)‖x,y ;α

k
A,σ

k
A

)
(2)

G(A, k) is the k-th level of a Gaussian pyramid of A, where
G(A, 1) = A. ‖∇G(A, k)‖x,y is the gradient norm of A
at position (x, y) and level k. The 4k−1 multiplier accounts
for the different number of pixels at each level of a Gaussian
pyramid. K is equal to 5 in our experiments. In the supple-
mentary material we detail how to calculate and differenti-
ate ‖∇A‖ efficiently using filter convolutions. c( · ;α,σ)
is the negative log-likelihood of a Gaussian Scale Mixture
[21] parametrized by α and σ, defined as:

c(x;α,σ) = − log

M∑
j=1

αj · N
(
x; 0, σ2

j

)
(3)

where α are mixing coefficients, σ are the standard devia-
tions of the Gaussians in the mixture, and M is the number
of Gaussians (M = 20). The mean is set to 0, as the most
likely albedo should be flat. The K GSMs are learned us-
ing EM on Gaussian pyramids of the albedo maps in our
training set. The distributions we learn can be seen in Fig-
ure 3(a).

2.2. Minimal Entropy

Beyond piece-wise smoothness, the second property we
expect from albedo is for there to be a small number of albe-
dos in an image — that the albedo palette is small. As
a hard constraint, this is not true: even in painted objects,
there are small variations in albedo. But as a soft constraint,
this minimum-entropy “sparsity” assumption holds. In Fig-
ure 4 we show the marginal distribution of log-albedo for
three objects in our dataset. Though the man-made “cup”



Figure 4. Three marginal distributions of log-albedo from our
dataset. Log-albedo in an image tend to be grouped around certain
values, or equivalently, these distributions tend to be low-entropy.

object shows the most clear peakedness in its distribution,
the “natural” objects show significant clustering.

We are not the first to explore global “sparsity” priors on
albedo. In [27] a sparsity constraint based on `1 minimiza-
tion among global reflectance values was used. In [1], the
assumption of albedo with a low Shannon entropy was used
to resolve the bas-relief ambiguity [4]. We use the entropy
formulation of [22], which has been previously used for the
related task of shadow removal [9], to impose a similar prior
on global albedo entropy. This entropy measure is defined
as the negative-log of the following “information potential”:

V (x, σ) =
1

N2
√
4πσ2

N∑
i=1

N∑
j=1

exp

(
− (xi − xj)2

4σ2

)
(4)

In [22] this is derived as a measure of quadratic entropy (or
Rényi entropy) for a set of points x assuming a Parzen win-
dow (a Gaussian kernel density estimator). Effectively, this
is a “soft” and differentiable generalization of Shannon en-
tropy, computed on a set of real values rather than a discrete
histogram.

This entropy is quadratically expensive in N to compute
naively. Others have used the Fast Gauss Transform (FGT)
to approximate it in linear time [9], but the FGT does not
provide a way to efficiently compute the analytical deriva-
tive of entropy. This was not a problem in [9], in which
only two parameters were being optimized over, but our
optimization involves gradient descent over entire albedo-
maps, so we must be able to calculate the analytical deriva-
tive extremely efficiently.

This motivates our novel approximation to this measure
of entropy. The key insight is that V can be re-expressed as:

V (n, σ) = nT(n ∗ g) (5)

where n is a histogram of x, ∗ is convolution, and g is a
particular Gaussian filter. Critically, this formulation also
allows us to efficiently compute the gradient of V (n, σ)
with respect to n, which (provided n was generated using
a “smooth” histogramming operation like linear interpola-
tion) allows us to backpropagate the gradient onto x. Our
approximate entropy is extremely efficient to compute (usu-
ally 10× to 100× faster than using the FGT or the improved

FGT) and is usually within 0.01% of the true entropy (sim-
ilar to the accuracy of the FGT or IFGT). A thorough ex-
planation of our technique is provided in the supplementary
material.

The entropy of log-albedo A under this model is:

ge(A) = −
K∑
k=1

log (V (G(A, k), σA)) (6)

This is the sum of the entropies of each scale of a Gaus-
sian pyramid of albedo. Modeling multiscale entropy in
this fashion is moderately more effective than using a
“flat” model of entropy on only the finest scale. Our final
loss function on log-albedo is a linear combination of our
smoothness and entropy terms:

g(A) = λsgs(A) + λege(A) (7)

where the λ multipliers and σA are learned through cross-
validation on the training set.

At first glance, it may seem that our two priors are re-
dundant: Encouraging piecewise smoothness seems like it
should cause entropy to be minimized indirectly. This is of-
ten true, but there are common situations in which both of
these priors are necessary. For example, if two regions are
separated by a discontinuity in the image then optimizing
for local smoothness will never cause the albedo on both
sides of the discontinuity to be similar. The merit of both
priors is further demonstrated in Figure 5.

3. Priors on Shape
Our prior on shape is three components: 1) a crude prior

on flatness, to address the bas-relief ambiguity, 2) a prior

(a) gs = 23.2,
ge = 7.9,

gs + ge = 31.1

(b) gs = 20.4,
ge = 31.6,

gs + ge = 52.0

(c) gs = 42.4,
ge = 7.9,

gs + ge = 50.3

Figure 5. A demonstration of the importance of both components
of our prior on albedo (only the finest scale of each prior is used).
In 5(a) we have a natural looking albedo map, and the losses as-
signed by our prior on albedo. The other figures are shaded and
shuffled versions of that same albedo. The shaded albedo has a
lower smoothness cost than the original albedo, as its edges are
less strong, but a higher entropy, as a larger variety of albedos are
present. The shuffled albedo has the same entropy as the origi-
nal, as its marginal distribution is identical, but has a much higher
smoothness cost. Only the sum of the two costs correctly assigns
the “natural” albedo map the lowest total cost.



on the orientation of the surface normal near the occluding
contour, and 3) a prior on smoothness in world coordinates,
based on the variation of mean curvature.

3.1. Flatness

Because we are solving a superset of the shape-from-
shading problem with unknown illumination, our priors
must address the bas-relief ambiguity [4] (roughly, that ab-
solute scale and orientation are ambiguous). We impose a
prior that prefers the flattest shape within the bas-relief fam-
ily, by minimizing the slant of Z at all points in Z:

ff (Z) = −
∑
x,y

log
(
2Nz

x,y(Z)
)

(8)

Where Nz
x,y(Z) is the z-component of the surface normal

of Z at position (x, y) (as defined in the supplementary ma-
terial), which increases as slant decreases. ff (Z) is the neg-
ative log-likelihood of the slant of Z assuming that the sur-
face has been oriented uniformly at random in space. The
particular form of ff (Z) is due to foreshortening: if we
have observed a surface in space, it is more likely that it
faces the observer (Nz ≈ 1) than that it is perpendicular to
the observer (Nz ≈ 0).

3.2. Occluding Contours

The occluding contour of a shape is a powerful cue for
shape interpretation [18], and algorithms have been pre-
sented for coarsely estimating shape given contour infor-
mation [7]. At the occluding contour of an object, the sur-
face is tangent to all rays from the vantage point. Under
orthographic projection (which we assume), this means the
z-component of the normal is 0, and the x and y compo-
nents are determined by the contour in the image.

Because our dataset consists of masked objects, identify-
ing the occluding contourC is trivial. For each point i onC,
we estimate ni, the local normal to the occluding contour in
the image plane. Using those we regularize the surface nor-
mals in Z along the boundary by minimizing the following
loss:

fc(Z) =
∑
i∈C

√
(Nx

i (Z)− nxi )
2
+ (Ny

i (Z)− n
y
i )

2 (9)

Where N(Z) is the surface normal of Z, as defined in the
supplementary material. This loss function works better
than more obvious alternatives, such as minimizing the an-
gle between Ni and ni. We believe this is due to the robust-
ness of the square-root term (which allows the occluding
contour assumption to be violated when necessary, see Fig-
ure 2) and because we do not directly minimize Nz (as Nz

is very rarely close to 0 in our training set) but only implic-
itly minimize it by adjusting Nx and Ny .

3.3. Variation of Mean Curvature

There has been much work on modeling the statistics of
natural shapes [2, 17, 29], with one overarching theme be-
ing that regularizing some function of the second deriva-
tives of a surface is effective. However, this past work has
severe issues with invariance to out-of-plane rotation and
scale. Working within differential geometry, we present a
representation of Z based on the variation of mean curva-
ture, which allows us to place “smoothness” priors on Z
that are invariant to rotation and scale.

To review: mean curvature is the divergence of the nor-
mal field. Planes and soap films have 0 mean curvature ev-
erywhere, spheres and cylinders have constant mean curva-
ture everywhere, and the sphere has the smallest total mean
curvature among all convex solids with a given surface area
[13]. Mean curvature is a measure of curvature in world co-
ordinates, not image coordinates, so (ignoring occlusion)
the marginal distribution of H(Z) is invariant to out-of-
plane rotation of Z — a shape is just as likely viewed from
one angle as from another. In comparison, the Laplacian
of Z and the second partial derivatives of Z can be made
large simply due to foreshortening, which means that pri-
ors placed on these quantities [2, 29] would prefer certain
shapes simply due to the angle from which those shapes are
observed — clearly undesirable.

But priors on just mean curvature are not scale-invariant.
Were we to minimize |H(Z)|, then the most likely shape
under our model would be a plane, while spheres would be
unlikely. Were we to minimize |H(Z) − α| for some con-
stant α, then the most likely shape under our model would
be a sphere of a certain radius, but larger or smaller spheres,
or a resized image of the same sphere, would be unlikely.
Clearly, such scale sensitivity is an undesirable property for
a general-purpose prior on natural shapes. Inspired by pre-
vious work on minimum variation surfaces [20], we place
priors on ‖∇H(Z)‖— the change in mean curvature. The
most likely shapes under such priors are surfaces of con-
stant mean curvature, which are well-studied in geometry
and include soap bubbles and spheres of any size (including
planes). Priors on ‖∇H(Z)‖, like priors on H(Z), are in-
variant to rotation and viewpoint, as well as concave/convex
inversion.

Mean curvature is defined as the average of principle cur-
vatures: H = 1

2 (κ1 + κ2). It can be approximated on a
surface using filter convolutions that approximate first and
second partial derivatives, as show in [5].

H(Z) =

(
1 + Z2

x

)
Zyy − 2ZxZyZxy +

(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2
In the supplementary material we detail how to calculate
and differentiate H(Z) efficiently. We place heavy-tailed
distributions on the gradient norm of the mean curvature of



Z at multiple scales:

fk(Z) =
K∑
k=1

4k−1
∑
x,y

c

(∥∥∥∥∇H (G(Z, k)2k−1

)∥∥∥∥
x,y

;αkZ ,σ
k
Z

)

Notation is similar to Equation 2. The 2k−1 factor is nec-
essary for shapes to be downsampled properly in z as well
as x and y. c( · ;αkZ ,σkZ) is the negative log-likelihood of
a GSM, parametrized by αkZ and σkZ , which is trained on
the k’th level of the Gaussian pyramids of the depth-maps
in our training set. The distributions we learn for each scale
can be seen in Figure 3(b).

Our final prior on shape is a linear combination of the
three aforementioned components:

f(Z) = λfff (Z) + λcfc(Z) + λkfk(Z) (10)

where the λmultipliers are learned through cross-validation
on the training set.

4. Optimization
We now address the problem of using our priors to re-

cover shape and albedo given a known illumination. As in
[2], we rearrange the problem in Equation 1 by defining A
as a function of Z and I , reducing it to:

minimize
Z

g(I − S(Z,L)) + f(Z) (11)

Because our priors are different, we can use more standard
optimization techniques than in [2]. We optimize using a
coarse-to-fine variant of L-BFGS: begining with a heavily
downsampled Z, we optimize over Z using L-BFGS until
convergence, then upsample Z by a factor of 2 and repeat
optimization. Given a downsampled Z, calculation of the
loss and the gradient of the loss is as follows: We upsam-
ple Z to the size of the image I , compute S(Z,L) using
our rendering engine, and compute the log-albedo A. We
then compute f(Z) and g(A) and their gradients, and back-
propagate ∇Ag(A) onto ∇Zf(Z), which we then down-
sample to the size of the downsampled Z being optimized
over. When optimization is complete, we have an estimated
shape Ẑ, from which we compute an estimated shading
ŝ = exp(S(Ẑ, L)) and albedo ρ̂ = exp(I − S(Ẑ, L)). For
a single image, optimization to convergence takes between
1 and 10 minutes on a 2011 Macbook Pro, depending on
the size of the input image. Backpropagating the analytical
gradients of the loss functions can be somewhat daunting,
so we provide implementation details in the supplementary
material.

5. Unknown Illumination
To demonstrate how this technique can be modified to

handle unknown illumination, we must reformulate our

problem as one of MAP estimation:

maximize
Z

log (P (A|Z,L)P (Z)) (12)

P (A|Z,L) = exp(−g(I − S(Z,L)) (13)
P (Z) = exp(−f(Z)) (14)

Until now we have assumed that L is known. However, we
can introduce L as a latent variable, and marginalize over it:

maximize
Z

log

(
P (Z)

∑
L

P (A|Z,L)P (L)

)
(15)

Rather than optimize this marginal log-likelihood using EM
(which is intractably expensive), or directly optimize the
complete log-likelihood over Z and some L using gradi-
ent techniques (which works poorly due to local minima),
we use the technique presented in [24] to directly optimize
the expected complete log-likelihood using gradient-based
techniques:

maximize
Z

log (P (Z))+
∑
L

P (L|A,Z) log (P (A|Z,L))

(16)
To optimize this we run our coarse-to-fine L-BFGS, but in
each evaluation of the loss we compute the posterior over
illumination P (L|A,Z) (equivalent to the E-step), and use
this to compute the marginal log-likelihood and its gradient.
When L-BFGS takes a step, this is equivalent to a partial
M-step. P (L) is a simple model which assigns a uniform
probability to all illumination conditions in our training set
(some of which are shown in Figure 6). P (L) and our op-
timization technique are detailed further in the supplemen-
tary material. Once optimization is complete, we use our
recovered shape Ẑ to compute the expected illumination
L̂ =

∑
L P (L|A, Ẑ)L, and use that to produce ŝ and ρ̂.

Naive optimization requires evaluating P (A|Z,L) for
∼100 different illumination conditions each time we eval-
uate our loss function. In the supplementary material we
present a simple approximation which makes optimization
more tractable, but optimization is still ∼30× more expen-
sive than when illumination is known. Results are shown in
Table 1, Figures 1 and 7, and the supplementary material.

6. Results
We present an augmented version of the MIT Intrinsic

Images dataset [11] in which we have used photometric
stereo to estimate the shape of each object and the spher-
ical harmonic illumination for each image. An example
is shown in Figure 6, and details are provided in the sup-
plementary material. In all of our experiments, we use the
following test-set: cup2, deer, frog2, paper2, pear, potato,
raccoon, sun, teabag1, turtle. The other 10 objects are used
for training.



Let us define some error metrics:

Z-MAE =
1

n
min
β

∑
x,y

∣∣∣Ẑx,y − Z∗x,y + β
∣∣∣ (17)

S-MSE =
1

n
min
γ

∑
x,y

(
γŝx,y − s∗x,y

)2
(18)

ρ-MSE =
1

n
min
α

∑
x,y

(
αρ̂x,y − ρ∗x,y

)2
(19)

I-MSE =
1

n

∑
x,y

∥∥∥α̂ρ̂x,yN̂x,y − ρ∗x,yN∗x,y∥∥∥2 (20)

Z-MAE is the shift-invariant mean absolute error of Ẑ (ab-
solute error is used instead of squared error because it has
an interpretation as the volume of the error). S-MSE and
ρ-MSE are scale-invariant MSE of the recovered shading
ŝ and albedo ρ̂. The scale invariance accounts for the am-
biguity in the absolute brightness of the scene or absolute
intensity of the albedo. I-MSE is the expected MSE in re-
rendering Ẑ and ρ̂ under different illuminations, relative to
the ground truth. This error metric was defined in [2], but
due to an error in that paper’s calculations, we reformulate
it here (see the supplementary material for the derivation).
I-MSE is made to be roughly scale invariant by using the
scaled version of ρ we obtain when computing ρ-MSE. We
also use LMSE, the locally scale-invariant error in shading
and albedo defined in [11].

Results for recovering shape and albedo given a single
image and a known illumination are in Table 1. We com-
pare against several recently-published intrinsic images al-
gorithms (meant to decompose an image into shading and
albedo components), upon which we’ve run a shape-from-
shading algorithm on the shading image. Though many of
the intrinsic images algorithms were designed for color im-
ages, we’ve run them on grayscale images. For the sake of
a generous comparison, the SFS algorithm uses our priors
on Z, which boosts each baseline’s performance (detailed
in the supplementary material). We also compare against
[2], which directly produces shape and albedo. The “flat”
algorithm is a baseline in which Z = 0. Our performance
relative to all other algorithms is visualized in Figure 2 and
in the supplementary material.

Table 1 also includes an ablation study, in which compo-
nents of our model are removed, and includes a shape-from-
contour model in which only our priors on Z are used. The
ablation study shows that removing any prior has a nega-
tive effect on performance. Albedo entropy has a relatively
small impact on our error metrics, but produces noticeable
improvements in the output’s appearance.

Table 1 also shows our performance when illumina-
tion is unknown. Surprisingly, performance is very similar
whether or not illumination is known. Our priors on shape
and albedo (and our simple prior on illumination) appear to

Figure 6. An object from our dataset. The MIT Intrinsic Images
dataset’s [11] contributions are shown in blue (ground-truth shad-
ing and reflectance, 10 images from different illuminations, and a
“diffuse” image). We generate “ground truth” shape and illumina-
tion (and surface normals, implicitly), shown in red. The yellow
images are renderings of our shape and illuminations, which show
that our recovered shapes and illuminations are reasonable. The
diffuse image ( and optionally, its illumination) in the bottom row
are the only input to our algorithm, and the other components are
used for evaluating our results (if the object is in the test set) or for
learning our priors (if the object is in the training set).

be sufficient to accurately recover illumination in addition
to shape and albedo.

To clarify, all the images and results in this paper were
produced using the same piece of code and (except those
in the ablation study) the same setting of our 5 hyperpa-
rameters: λs, λe, σA, λk, λf , λc, which were all tuned on
the training set. Performance could be improved by tuning
these parameters for each image, which we did not do.

Recovering Shape and Albedo given Illumination and 1 Grayscale Image
Algorithm Z-MAE I-MSE LMSE S-MSE ρ-MSE Avg.
Flat Baseline 25.56 0.1369 0.0385 0.0563 0.0427 0.2004
Retinex [11, 16] + SFS 82.06 0.1795 0.0289 0.0291 0.0264 0.2009
Tappen et al. 2005 [28] + SFS 43.30 0.1522 0.0292 0.0343 0.0256 0.1761
Barron & Malik 2011 [2] 21.10 0.0829 0.0584 0.0282 0.0468 0.1682
J. Shen et al. 2011 [26] + SFS 48.51 0.1629 0.0445 0.0478 0.0450 0.2376
L. Shen & Yeo 2011 [27] + SFS 31.61 0.1191 0.0205 0.0236 0.0174 0.1260
Our Shape from Contour 21.42 0.0805 0.0350 0.0280 0.0311 0.1394
Our Model (No ||∇A||) 17.50 0.0620 0.0289 0.0188 0.0238 0.1070
Our Model (No ||∇H(Z)||) 21.81 0.1011 0.0341 0.0205 0.0194 0.1244
Our Model (No Flatness) 35.11 0.0651 0.0190 0.0148 0.0157 0.1002
Our Model (No Contour) 28.45 0.0811 0.0204 0.0167 0.0189 0.1082
Our Model (No Albedo Entropy) 21.23 0.0523 0.0196 0.0138 0.0162 0.0865
Our Model (All Priors) 21.86 0.0521 0.0191 0.0136 0.0156 0.0856

Recovering Shape, Albedo, and Illumination given 1 Grayscale Image
Our Model (All Priors) 19.41 0.0577 0.0197 0.0178 0.0193 0.0946

Table 1. A comparison of our model against other intrinsic images
algorithms. Shown are the five error metrics (the geometric mean
across the test set), and an “average” error (the geometric mean
of the other five geometric means, and what we minimize during
cross-validation). Also shown are special cases of our model in an
“ablation study”, in which priors are removed. Each component
contributes positively to the performance of our complete model.
For the unknown illumination task, we were not able to find any
algorithms to compare against. Note that the “L. Shen & Yeo 2011
[27]” baseline hand-tunes two parameters for each image in the
test set to minimize LMSE, while we use a single set of parameters
for all images, tuned to the training set.



(a) Input Image (b) Modified illumination (c) Modified shape (d) Modified albedo (e) Modified orientation

Figure 7. Our system has obvious graphics applications. Given only a single image grayscale image, we can estimate an object’s shape,
albedo, and illumination, modify any of those three scene properties (or simply rotate the object), and then re-render the object.

7. Conclusion
We have presented a series of novel priors on shape

and albedo. For albedo, we have explored smoothness and
global sparsity in log-albedo space. For shape, we have ex-
plored flatness, the orientation of the surface at the occlud-
ing contour, and second-order smoothness using the varia-
tion of mean curvature. Previous work on jointly inferring
shape and albedo was extended to allow for illumination to
be estimated as well without a decrease in accuracy.

Shading is our algorithm’s primary cue for inferring
depth, and in a shading-free scene (in which all illumina-
tion is ambient) our model reduces to a shape-from-contour
algorithm. Cast shadows and specularities are currently not
addressed by our model, and are often the cause of errors.
Our technique is targeted towards objects; to be extended to
scenes, one could use segmentation techniques to generate
candidate objects.

Our model produces qualitatively reasonable results on
arbitrary grayscale images taken in the real world, and dra-
matically outperforms all previously published algorithms
on the MIT Intrinsic Images dataset. Our technique, to the
best of our knowledge, is the first unified model for jointly
estimating shape, albedo, and illumination from a single im-
age.
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