
Shape, Albedo, and Illumination from a Single Image of an Unknown Object
Supplementary Material

Jonathan T. Barron and Jitendra Malik
UC Berkeley

{barron, malik}@eecs.berkeley.edu

1. Gradient Norm
We will detail how to calculate ‖∇A‖ and its analytical

derivative efficiently. The gradient norm of log-albedo is:

‖∇A‖ =

√
∂A

∂x

2

+
∂A

∂y

2

(1)

We will discretely approximate this using filter output. We
would like to use 3× 3 filters so that gradient estimates are
located on pixels, rather than between pixels. Naively we
would do this using sobel filters, but that formulation has
the property that ‖∇A‖x,y is not a function of Ax,y , be-
cause of the zeros in the filters being used. This often leads
to undesirable artifacts in the output, where single isolated
pixels of A are wrong. We will therefore use this formula-
tion:

‖∇A‖ =
√
(A ∗ hx2)

2
+ (A ∗ hy2)

2 ∗ hb2 (2)

hx2 = 1
2

[
1 – 1
1 – 1

]
, hy2 = 1

2

[
1 1

– 1 – 1

]
, hb2 = 1

4

[
1 1
1 1

]
(3)

This operator is still a 3 × 3 operation on A, but responds
more evenly to variation in A.

When computing ‖∇A‖, we compute some intermediate
“images”, which are held onto until after the loss functions
on ‖∇A‖ have been calculated, at which point they are used
to backpropagate the gradient of the loss function using the
chain rule.

Gx = A ∗ hx2 , Gy = A ∗ hy2 (4)

Gn =
√
(Gx)2 + (Gy)2 (5)

‖∇A‖ = Gn ∗ hb2 (6)

Given f(‖∇A‖) and ∇‖∇A‖f , a loss function and the
gradient of that loss function with respect to ‖∇A‖, here is
how calculate ∇Af , the gradient of the loss with respect to
A:

Dn =
(∇‖∇A‖f) ? hb2

Gn
(7)

∇Af = (Gx ×Dn) ? hx2 + (Gy ×Dn) ? hy2 (8)

× is component-wise multiplication of two images, / is
component-wise division, ∗ is convolution and ? is cross-
correlation.

2. Quadratic Entropy
Here we will detail a novel method for calculating

V (x, σ), the information potential of the elements of x un-
der the quadratic entropy measure introduced in [6] and
popularized in [3]. The entropy of x is − log(V (x, σ),
which is the quantity we actually minimize because it’s in
the same “units” as our priors on likelihood.

Let x be a vector,N is the length of x, and σ is the band-
width parameter (the width of the Gaussian bump around
each element of x). Then the quadratic entropy of x under
the Parzen window defined by x and σ is defined as:

V (x, σ) =
1

Z

N∑
i=1

N∑
j=1

exp

(
− (xi − xj)

2

4σ2

)
(9)

Z = N2
√
4πσ2 (10)

Our first insight is that this can be re-expressed as a function
on a histogram of x. Let B = bin width, K = number of
bins, and ni = count of x in bin i. Then:

V (n, σ) =
K∑
i=1

ni

K∑
j=1

nj
Z

exp

(
−B

2(i− j)2

4σ2

)
(11)

Provided many elements of x fall into the same bin, this
may be easier to compute than the naive representation, but
it’s still quadratic in its worst-case computational complex-
ity. Our second insight is that this can be expressed as a
convolution of n with a small Gaussian filter. Let g be a
Gaussian filter of length 2J + 1 centered at J + 1:

gj =
1

Z
exp

(
−B

2j2

4σ2

)
(12)

Where j is distance from the center. With this, we can
rewrite V (n) as follows:

V (n, σ) = nT(n ∗ g) (13)

1

Where ∗ is convolution. This quantity is extremely efficient
to compute, provided that the lengths of n and g are small,
which is true provided that the range of x is not much larger
than σ, which is generally true in practice.

Crucially, this formulation also allows us to easily com-
pute the gradient of V (n, σ) with respect to n:

∇V (n, σ) = 2(n ∗ g) (14)

Simple histogramming is a non-smooth operation, making
it impossible to backpropagate this gradient signal onto x.
However, if instead of standard histogramming with use
a smooth approximation like linear interpolation, then the
gradient with respect to x can indeed be calculated analyti-
cally. Intuitively, this is done by having each x vote for its
two nearest bins, rather than simply vote for its one nearest
bin. With this approximation, the “bins” in our histogram
can be thought of as fenceposts, where x is assigned to the
closest fenceposts above and below it.

More concretely: Let RL and RU define the bounds
on the range of the bins, and RL − RU = BK, and
RU = min(x) and RL = max(x). Consider datapoint
x. The fencepost it will be assigned to are bL and bU , where
bL is the largest fencepost below it, and bU is the smallest
fencepost above it:

bL = b(x−RL)/Bc, bU = bL + 1 (15)

x will be assigned to those bins according to these weights:

wL = (x− bL)/B, wU = 1− wL (16)

When adding x to the histogram, we just add these two
weights to the appropriate bins:

nL = nL + wL, nU = nU + wU (17)

The partial derivatives of the histogram with respect to x are
simple:

∂nL
∂x

= − 1

B
,

∂nU
∂x

=
1

B
(18)

With this, we can construct the Jacobian Jn of n with re-
spect to x, which is a K by N sparse matrix. With this, we
can calculate the gradient of V with respect to x:

∇V (x) ≈ JT
n∇V (n) (19)

This approximation to quadratic entropy is, in practice,
extremely efficient and extremely accurate. Other tech-
niques exist for computing approximations to this quantity,
most notably the fast Gauss transform and the improved fast
Gauss transform. Also, V (x, σ) could be computed exactly
using the naive formulation in Equation 9. The naive for-
mulation is completely intractable, as the computation com-
plexity if O(N2). Our algorithm, and the FGT-based algo-
rithms are bothO(N). However, there is no efficient way to

compute∇V (x, σ) using the FGT-based algorithms, which
makes those algorithms impossible to use in our gradient-
based optimization scheme. Our approximation is usually
within 0.01% of the true entropy, which is similar to the
accuracy obtained using the fast Gauss transform or the im-
proved fast Gauss transform. In addition to allowing for
∇V (x, σ) to be approximated extremely efficiently, our al-
gorithm is 10 or 100 times faster than the FGT-based algo-
rithms.

3. Mean Curvature
We will detail how to calculate H(Z) and its analytical

derivative efficiently. Mean curvature on a surface is a func-
tion of the first and second partial derivatives of that surface.

H(Z) =

(
1 + Z2

x

)
Zyy − 2ZxZyZxy +

(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2 (20)

To calculate this discretely, we will first approximate the
partial derivatives using filter convolutions.

Zx = Z ∗ hx3 , Zy = Z ∗ hy3 (21)
Zxx = Z ∗ hxx3 , Zyy = Z ∗ hyy3 , Zxy = Z ∗ hxy3 (22)

hx3 = 1
8

 1 0 – 1
2 0 – 2
1 0 – 1

 , hy3 = 1
8

 1 2 1
0 0 0

– 1 – 2 – 1



hxy3 = 1
4

 1 0 – 1
0 0 0

– 1 0 1

 , hyy3 = 1
4

 1 2 1
– 2 – 4 – 2
1 2 1

 , hxx3 = 1
4

 1 – 2 1
2 – 4 2
1 – 2 1


We then compute the following intermediate “images”, and
use them to compute H(Z).

M =
√
1 + Z2

x + Z2
y

N = (1 + Z2
x)Zyy − 2ZxZyZxy + (1 + Zy2)Zxx

D = 2M3

H(Z) = N/D (23)

When computing H(Z), we also compute the following,
which are held onto until after the loss functions on H(Z)
have been calculated, at which point they will be used to
backpropagate the gradient of the loss function using the
chain rule.

Fx = 2(ZxZyy − ZxyZy)−
3ZxN

M2

Fy = 2(ZxxZy − ZxZxy)−
3ZyN

M2

Fxx = 1 + Z2
y

Fyy = 1 + Z2
x

Fxy = −2ZxZy (24)

Given f(H(Z)) and∇H(Z)f , a loss function and the gradi-
ent of that loss function with respect to H(Z), here is how
calculate∇Zf , the gradient of the loss with respect to Z.

B =
∇H(Z)f

D
(25)

∇Zf = (BFx) ? h
x
3 + (BFy) ? h

y
3 (26)

+ (BFxx) ? h
xx
3 + (BFyy) ? h

yy
3 + (BFxy) ? h

xy
3

Adjacent variables are component-wise multiplication of
two images, / is component-wise division, ∗ is convolution
and ? is cross-correlation.

4. Linearization, Rendering, and Albedo
We will detail how to calculate S(Z,L) and its analytical

derivative efficiently, for the purpose of calculating A and
backpropagating losses onA back ontoZ . First, we convert
Z into a set of surface normals:

Nx =
Z ∗ hx3
B

, Ny =
Z ∗ hy3
B

, Nz =
1

B
(27)

B =

√
1 + (Z ∗ hx3)

2
+ (Z ∗ hy3)

2 (28)

We also compute the following:

F11 = (1−Nx ×Nx)×Nz (29)
F22 = (1−Ny ×Ny)×Nz (30)
F13 = − (Nx ×Nz ×Nz) (31)
F23 = − (Ny ×Nz ×Nz) (32)
F12 = − (Nx ×Ny ×Nz) (33)

Let us look at the surface normal at one pixel: ni =
[Nx

i , N
y
i , N

z
i]

T. Rendering that point with spherical har-
monics is:

S(ni, L) = [ni; 1]
TM[ni; 1] (34)

M =


c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7


c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

Note that S(ni, L) is the log-shading at pixel i, not the shad-
ing. This is different from the traditional usage of spheri-
cal harmonic illumination. Directly modeling log-shading
makes optimization easier by guaranteeing that shading is
greater than 0 without needing to clamp shading at 0, as is
normally done. The gradient of the log-shading at this point
with respect to the surface normal is:

Bi = ∇ni
S(ni, L) = 2nT

i M[:, 1 : 3]

WhereB is a three-channel image, whereBx is the gradient
of S with respect to Nx, etc. Given the log-shading, we can
infer what the log-albedo at this point must be:

Ai = Ii − S(ni, L) (35)

After calculating g(A) and∇Ag(A), we can backpropagate
the gradient onto Z as follows:

DS = −∇Ag(A) (36)
Dx = Bx × F11 +By × F12 +Bz × F13

Dy = Bx × F12 +By × F22 +Bz × F23

∇Zg(A) = (DS ×Dx) ? h
x
3 + (DS ×Dy) ? h

y
3

× is component-wise multiplication of two images, / is
component-wise division, ∗ is convolution and ? is cross-
correlation.

5. Unknown Illumination
When illumination is unknown, the optimization prob-

lem we must solve is:

maximize
Z

log

(
P (Z)

∑
L

P (A|Z,L)P (L)

)
(37)

Rather than optimizing this marginal log-likelihood using
Expectation-Maximization (which is intractably expensive
due to the cost of doing a complete M-step), or directly op-
timize the complete log-likelihood with respect to Z and
some L using gradient techniques (which works poorly due
to local minima), we use the technique presented in [7] to
directly optimize the expected complete log-likelihood us-
ing gradient-based techniques, in a manner that approxi-
mates doing EM:

maximize
Z

log (P (Z)) +
∑
L

P (L|A,Z) log (P (A|Z,L))

Or, in terms of our loss functions:

minimize
Z

f(Z) +
∑
Li

P (Li|A,Z)g(I − S(Z,Li))

First we must clarify what L means in these equations.
Rather than building a sophisticated model of illuminations
for P (L), we simply assume that L is one of the illumina-
tion conditions in our training set. That is, P (L) assigns all
a uniform probability to all illumination conditions within
our training set and a probability of 0 to any other illumi-
nation. This is accomplished by using the set {Li} (where
each Li is a training illumination) in the marginalization
in our optimization. Illumination conditions in which the
z component is negative are removed when constructing
{Li}, as they are assumed to be incorrectly estimated by our

photometric stereo algorithm, as the lighting comes from
the front in all of our images.

For one of these illumination conditions, by Bayes rule,
we have:

P (Li|A,Z) ∝ P (A|Li, Z)P (Li) (38)
∝ P (A|Li, Z) (39)

Which we calculate as follows:

P (Li|A,Z) =
exp (−γg(I − S(Z,Li)))∑
j exp (−γg(I − S(Z,Lj)))

(40)

Where γ is a parameter that determines how smoothed this
distribution is. A too-peaked distribution will cause opti-
mization to quickly select a single illumination as the most
probable one, and a too-smooth distribution will cause op-
timization to never focus in on any particular illumination.
We fit γ as a new hyper parameter, but it is actually just a
scaling applied to the two pre-existing hyperparameters that
govern our albedo priors: λs and λe.

With P (Li|A,Z), we can compute the expected com-
plete log-likelihood and its gradient using a weighted com-
bination of the losses and gradient of the losses for each illu-
mination. We then simply optimize the expected complete
log-likelihood using the coarse-to-fine L-BFGS optimiza-
tion technique detailed in this paper. Once optimization is
complete, we use our recovered shape Ẑ to compute the ex-
pected illumination:

L̂ =
∑
Li

P (Li|A, Ẑ)Li (41)

And then use Ẑ and L̂ to compute an albedo:

Â = I − S(Ẑ, L̂) (42)

Note that because L̂ is an expectation over L, that our al-
gorithm is capable of producing any illumination within the
convex hull of the illuminations in our training set, despite
P (L) being a discrete model.

Optimization can be sped up through the observation
that, after optimization has progressed for some time, the
vast majority of illumination conditions are assigned a pos-
terior very near zero (P (Li|A,Z) ≈ 0). To take advan-
tage of this, at each evaluation of our loss function we fit
a normal distribution to all Li, weighted by P (Li|A,Z),
and then flag all Li within a Mahalanobis distance of 6 (all
Li within six standard deviations) as being “active”. At the
next evaluation of the loss function, only “active” illumi-
nations are considered. This means that once P (Li|A,Z)
starts getting peaked, optimization becomes much faster.
It’s important to note that an illumination condition that
has been removed from the active set can be revived if the
P (L|A,Z) distribution shifts towards it, at which point it

will be within the normal distribution that we fit on each
iteration. In practice, this approximation does not seem to
effect the output of optimization.

6. Error
Our error metric I-MSE is an approximation of the ex-

pectation of the mean-squared error between renderings of
our recovered shape and albedo against the true shape and
albedo, over all illumination conditions. Formally:

I-MSE ≈ 1
n

∑
x,y EL

[(
ρ̂x,y exp(S(Ẑ, L)x,y)− ρ∗x,y exp(S(Z∗, L)x,y)

)2]

This error metric was introduced in [1], but with some mis-
takes in their derivation of the efficient closed-form approxi-
mation of this error metric. Here we will present a corrected
version of I-MSE and its derivation.

First, we will define ρ̂ and n̂ our estimated albedo and
normal at some pixel, and ρ∗ and n∗, the true normal and
albedo at that pixel. Ignoring the max(0, ·) term in Lam-
bertian reflectance, the squared error in the renderings of
our recovered albedo and normal and the true albedo and
normal given some illumination L is:

Err(Lx, Ly, Lz) = (ρ̂× (Lxn̂x + Lyn̂y + Lzn̂z)

− ρ∗ × (Lxn
∗
x + Lyn

∗
y + Lzn

∗
z))

2

Let:

dx = ρ̂n̂x − ρ∗n∗x (43)
dy = ρ̂n̂y − ρ∗n∗y (44)
dz = ρ̂n̂z − ρ∗n∗z (45)

Then we can rewrite the error as:

Err(Lx, Ly, Lz) = (dxLx + dyLy + dzLz)
2 (46)

We would like to integrate over Err over the unit sphere of
illuminations. This is equivalent to the following:

Lx = cos(θ) sin(φ) (47)
Ly = sin(θ) sin(φ) (48)
Lz = cos(φ) (49)

E[Err] =
3

4π

∫ 2π

0

∫ π

0

sin(φ)Err(Lx, Ly, Lz) dθdφ

= d2x + d2y + d2z (50)

We define I-MSE as the mean of E[Err] over all pixels in
the image for which we have ground-truth shape and albedo.

I-MSE =
1

n

∑
x,y

∥∥∥ρ̂x,yN̂x,y − ρ∗x,yN∗x,y∥∥∥2
2

(51)

7. Dataset
Here we will detail how we recover “ground-truth” shape

and spherical harmonic illumination for each image of each
object in our dataset. This is a simple photometric stereo
algorithm, in which we optimize over shapes and illumina-
tions to minimize the absolute error between renderings of
our dataset and the actual images in our dataset. Absolute
error is used to give us robustness to errors due to shadows
and specularities, which our rendering engine (and there-
fore, our dataset) do not consider or address properly. Re-
covered shapes and illuminations were then cleaned up by
hand to address bas-relief ambiguity issues[2].

We treat each channel of each image as a separate im-
age, so our dataset is in color. In the experiments in this pa-
per, we use only the grayscale information we recover, by
taking the average of the SH illuminations we recover over
each channel, and taking the mean of the color reflectance
images.

First, to account for varying albedo, we compute a “shad-
ing” image for each image on our dataset.

s∗i,j = exp(Ii,j −Ai) (52)

We will now detail each step in the inner loop of our pho-
tometric stereo algorithm. We first take each current shape
estimate Z, and linearize it to get a set of fixed surface nor-
mals. For each image j

Lj ← argmin
L

∑
i

| exp(S(ni, L))− s∗i,j | (53)

This is done using Iteratively Reweighted Least-Squares.
We then fix each image’s illuminationLj , and optimize over
each object’s normals ni.

ni ← argmin
n

∑
j

| exp(S(n, Lj))− s∗i,j | (54)

This optimization is done with L-BFGS. In this step, the
normals are decoupled, and so surface integrability is not
enforced. Given this estimate of surface normals, we can
compute a integrable surface Z which approximates this
normal field using least-squares:

Z ← argmin
Z

∑
i

(
Z ∗ hx − nxi

nzi

)2

+

(
Z ∗ hy − nyi

nzi

)2

These three optimization steps are repeated until conver-
gence (30 iterations). For the first 10 iterations, we con-
strain all of the illuminations belonging to the same “scene”
(light1, light2, diffuse, etc) to be scaled and shifted versions
of each other, and then allow each illumination for every
image to vary freely for the next 20 iterations. The result
of this algorithm is an estimate of Z for each object and an
estimate of L for each image.

This photometric stereo algorithm still suffers from Bas-
Relief ambiguity[2] issues, despite the abundance of data.
We therefore manually adjust each recovered Z over the
three parameters of the Bas-Relief ambiguity by hand.
Also, some regions of Z are clearly incorrect due to shad-
ows. These regions are manually removed (and are not in-
cluded in the evaluation of our error metrics which concern
Z). After these manual tweaks to each shape, we update the
set of illuminations to minimize absolute error once again.
The two “cup” and “teabag” images did not have discrim-
inative enough shape features for photometric stereo to re-
cover reasonable second-order spherical harmonic illumina-
tions, so for those objects we instead recover only first-order
spherical harmonic illumination parameters (equivalent to
point-light + ambient illumination).

The MIT Intrinsic Images dataset was not acquired with
the goal of having the product of the “shading” and “re-
flectance” images be exactly equal to the diffuse image,
which our model (and our baseline models) assume. That
is, a lambertian rendering of our recovered shape and illu-
mination resembles a scaled version of the original “shad-
ing” image. We correct for this by adjusting the brightness
of the “shading” image such that it matches our rendering in
a least-squares sense, and we use this “corrected” shading
image in all of our experiments.

Note that the optimization tools we use for our photomet-
ric stereo algorithm are completely disjoint from the opti-
mization techniques used by algorithm in our paper, despite
the fact that those techniques could have been adapted to do
photometric stereo. This was done intentionally to dispel
any concerns that our results might be good simply because
they were obtained using a similar toolset as our photomet-
ric stereo algorithm.

Examples of our recovered shapes and illuminations, as
well as the shading and reflectance images already con-
tained in the MIT Intrinsic Images dataset, can be seen in
Figures 5 and 6. Images contributed by the MIT Intrinsic
Images dataset are shown in blue. The “ground truth” shape
and illumination generated by our photometric stereo algo-
rithm are shown in red. The yellow images are renderings
of our shape and illuminations, which look nearly identi-
cal to the reference images, thereby demonstrating that our
recovered shapes and illuminations are reasonable.

8. Shape From Shading

Our model for recovering shape and albedo given a
single image and illumination can easily be reduced to
a model for doing classic shape-from-shading (recovering
shape given a single image and illumination). Our optimiza-
tion problem becomes:

minimize
Z

λ|I − S(Z,L)|+ f(Z) (55)

Where I is the input log-image, and λ is a multiplier that
trades off the importance of the reconstruction terms against
the regularizer on Z. f(Z) and S(Z,L) are the same as de-
fined in the paper. Optimization is done using our coarse-
to-fine algorithm. This SFS algorithm is similar to past al-
gorithms which optimize over a linearized representation of
a depth map, with the primary difference being our choice
of f(Z).

This SFS algorithm is run on the shading images pro-
duced by the “intrinsic image” algorithms we benchmark
against. This is a very generous comparison on our part,
as we are effectively giving these other algorithms one-half
of the model we present here. However, the performance
of the comparison algorithms using less-sophisticated SFS
algorithms, in terms of Z-MSE and I-MSE (the only er-
ror metrics that depend on recovered shape), was so poor
that we felt it necessary to aggressively help these other al-
gorithms so as to not appear biased. This means, however,
that our improvement over these algorithms is not as much
a reflection of the effectiveness of f(Z) in isolation, but is
instead a demonstration of the effectiveness of optimizing
over f(Z) and g(A) to jointly recover shape and albedo,
rather than generating a shading image without consider-
ing the underlying shape, and then attempting to recover Z
from that shading image.

References
[1] J. T. Barron and J. Malik. High-frequency shape and albedo

from shading using natural image statistics. CVPR, 2011. 4,
10

[2] P. Belhumeur, D. Kriegman, and A. Yuille. The Bas-Relief
Ambiguity. IJCV, 1999. 5

[3] G. D. Finlayson, M. S. Drew, and C. Lu. Entropy minimiza-
tion for shadow removal. IJCV, 2009. 1

[4] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Free-
man. Ground-truth dataset and baseline evaluations for in-
trinsic image algorithms. ICCV, 2009. 10, 11, 12

[5] B. K. P. Horn. Determining lightness from an image. Com-
puter Graphics and Image Processing, 1974. 10

[6] J. C. Principe and D. Xu. Learning from examples with
quadratic mutual information. Workshop on Neural Net-
works for Signal Processing, 1998. 1

[7] R. Salakhutdinov, S. Roweis, and Z. Ghahramani. Optimiza-
tion with em and expectation-conjugate-gradient. ICML,
2003. 3

[8] J. Shen, X. Yang, Y. Jia, and X. Li. Intrinsic images using
optimization. CVPR, 2011. 10

[9] L. Shen and C. Yeo. Intrinsic images decomposition using a
local and global sparse representation of reflectance. CVPR,
2011. 10

[10] M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering
intrinsic images from a single image. TPAMI, 2005. 10

Figure 1. Our algorithm takes only a single cropped grayscale image as input (shown on the left side of each column) and produces as
output a depth map, albedo map, shading image, and spherical harmonic illumination model. All images here were taken by the authors
with a cellphone camera in uncontrolled indoor and outdoor illumination conditions, or downloaded from the internet. The “shading”
image is a rendering of the recovered depth under the recovered illumination, and depth is shown with a psuedo-color visualization (red is
near, blue is far). Our algorithm produces reasonable results, with most errors due to misattribution of image edges to albedo rather than
shape, or vice versa. Other sources of error are: specularities in the image, which often cause raised shapes at the specular highlight, cast
shadows, which are arbitrarily attributed to shape or albedo, or general low-frequency errors in shape, which are due the nature of shading
with regard to providing low-frequency shape information, or equivalently to shortcomings in our current shape priors.

Figure 2. Here we have the output of our algorithm on the MIT Intrinsic Images dataset. The objects used for training are shown on the left,
and the objects used for testing are shown in the right. The problem, and the presentation of the output, is exactly the same as in Figure 1

(a) Input Image (b) Ground Truth (c) Known
Illumination

(d) Unknown
Illumination

(e) Input Image (f) Ground Truth (g) Known
Illumination

(h) Unknown
Illumination

(i) Input Image (j) Ground Truth (k) Known
Illumination

(l) Unknown
Illumination

(m) Input Image (n) Ground Truth (o) Known
Illumination

(p) Unknown
Illumination

(q) Input Image (r) Ground Truth (s) Known
Illumination

(t) Unknown
Illumination

(u) Input Image (v) Ground Truth (w) Known
Illumination

(x) Unknown
Illumination

Figure 3. The output of our model, relative to ground-truth, when illumination is known and unknown, on objects from the MIT Intrinsic
Images dataset. Though performance varies across the two cases, in both our model produces reasonable output.

(a) Input Image &
Illumination

(b) Ground Truth (c) Our Model (d) Retinex[5, 4] +
SFS

(e) Tappen et al.
2005[10] + SFS

(f) Barron & Malik
2010[1]

(g) J. Shen et al.
2010[8] + SFS

(h) L. Shen & Yeo
2010[9] + SFS

(i) Input Image &
Illumination

(j) Ground Truth (k) Our Model (l) Retinex[5, 4] +
SFS

(m) Tappen et al.
2005[10] + SFS

(n) Barron & Malik
2010[1]

(o) J. Shen et al.
2010[8] + SFS

(p) L. Shen & Yeo
2010[9] + SFS

(q) Input Image &
Illumination

(r) Ground Truth (s) Our Model (t) Retinex[5, 4] +
SFS

(u) Tappen et al.
2005[10] + SFS

(v) Barron & Malik
2010[1]

(w) J. Shen et al.
2010[8] + SFS

(x) L. Shen & Yeo
2010[9] + SFS

Figure 4. A comparison of our technique, and others, for the task of recovering shape, albedo, and shading, given a single grayscale image
and a known illumination.

Figure 5. Some examples from our expanded version of the MIT Intrinsic Images dataset. Our contributions (shape, illumination) are
shown in red, and the MIT Intrinsic Images dataset’s[4] (albedo, shading, images) are shown in blue.

Figure 6. Some examples from our expanded version of the MIT Intrinsic Images dataset. Our contributions (shape, illumination) are
shown in red, and the MIT Intrinsic Images dataset’s[4] (albedo, shading, images) are shown in blue.

Figure 7. Some examples of the output of our “shape from contour” baseline.

