
Color Constancy, Intrinsic Images,
and Shape Estimation

Jonathan T. Barron and Jitendra Malik
{barron, malik}@eecs.berkeley.edu

UC Berkeley

Abstract. We present SIRFS (shape, illumination, and reflectance from
shading), the first unified model for recovering shape, chromatic illumina-
tion, and reflectance from a single image. Our model is an extension of our
previous work [1], which addressed the achromatic version of this prob-
lem. Dealing with color requires a modified problem formulation, novel
priors on reflectance and illumination, and a new optimization scheme for
dealing with the resulting inference problem. Our approach outperforms
all previously published algorithms for intrinsic image decomposition and
shape-from-shading on the MIT intrinsic images dataset [1, 2] and on our
own “naturally” illuminated version of that dataset.

1 Introduction

In 1866, Helmholtz noted that “In visual observation we constantly aim to
reach a judgment on the object colors and to eliminate differences of illumi-
nation” ([3], volume 2, p.287). This problem of color constancy — decomposing
an image into illuminant color and surface color — has seen a great deal of work
in the modern era, starting with Land and McCann’s Retinex algorithm [4, 5].
Retinex ignores shape and attempts to recover illumination and reflectance in
isolation, assumptions shared by nearly all subsequent work in color constancy
[6–11]. In this paper we present the first algorithm for recovering shape in con-
junction with surface color and color illumination given only a single image of
an object, which we call “shape, illumination, and reflectance from shading”
(SIRFS).

There are many early works regarding color constancy, such as gamut map-
ping techniques [6], finite dimensional models of reflectance and illumination [7],
and physically based techniques for exploiting specularities [8]. More recent work
uses contemporary probabilistic tools, such as modeling the correlation between
colors in a scene [9], or performing inference over priors on reflectance and il-
lumination [10]. All of this work shares the assumptions of Retinex that shape
(and to a lesser extent, shading) can be ignored or abstracted away.

Color constancy can be viewed as a subset of the intrinsic images problem:
decomposing a single image into its constituent “images”: shape, reflectance, il-
lumination, etc [13]. Over time, the computer vision community has reduced this
task to just the decomposition of an image into shading and reflectance. Though
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Fig. 1. Two objects from our datasets. Given just the masked input image (a), our
model produces (c): a depth-map, reflectance image, shading image, and illumination
model that together exactly explain the input image (illumination is rendered on a
sphere, and shape is shown as a pseudocolor visualization where red is near and blue is
far). Our output looks very similar to (b), the ground-truth explanation of the image —
in some cases, nearly indistinguishable. The top-performing intrinsic image algorithm
(d) performs much worse on our datasets, and only estimates shading and reflectance
(we assume ground-truth illumination is known for (d), and run a shape-from-shading
algorithm on shading to produce a shape estimate). Many more similar results can be
seen in the supplementary material.

this simplified “intrinsic images” problem has seen a great deal of progress in
recent years [2, 12, 14, 15] all of these techniques have critical difficulties with
non-white illumination — that is, they do not address color constancy. Addi-
tionally, none of these techniques recover shape or illumination, and instead
consider shading in isolation.

Another special case of intrinsic images is shape-from-shading (SFS) [16], in
which reflectance and illumination are assumed to be known and shape is recov-
ered. This problem has been studied extensively [17, 18], and very recent work
has shown that accurate shape can be recovered under natural, chromatic illumi-
nation [19], but the assumptions of known illumination and uniform reflectance
severely limit SFS’s usefulness in practice.

Perceptual studies show that humans use spatial cues when estimating light-
ness and color [20, 21]. This suggests that the human visual system does not
independently solve the problems of color constancy and shape estimation, in
contrast to the current state of computer vision.

Clearly, these three problems of color constancy, intrinsic images, and shape
from shading would benefit greatly from a unified approach, as each subproblem’s
strength is another’s weakness. We present the first such unified approach, by
building heavily on the “shape, albedo, and illumination from shading” (SAIFS)
model of our previous work [1], which addresses this problem for grayscale images
and white illumination. We extend this technique to color by: trivially modify-
ing the rendering machinery to use color illumination, introducing novel priors
for reflectance and illumination, and introducing a novel multiscale inference
scheme for solving the resulting problem. We evaluate on the MIT intrinsic im-
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ages dataset [1, 2], and on our own variant of the MIT dataset in which we have
re-rendered the objects under natural, chromatic illuminations produced from
real-world environment maps. This additional dataset allows us to evaluate on
images produced under natural illumination, rather than the “laboratory”-style
controlled illumination of the MIT dataset.

We will show that our unified model outperforms all current techniques for
the task of recovering shape, reflectance, and, optionally, illumination. By ex-
ploiting color in natural reflectance images, we do better than the grayscale
technique of [1] at disambiguating between shading and reflectance. By explic-
itly modeling shape and illumination we are able to outperform “intrinsic image”
algorithms, which only consider shading and reflectance and perform poorly as
a result. By modeling chromatic illumination we are able to exploit chromatic
shading information, and thereby produce improved shape estimates, as demon-
strated in [19]. For these reasons, when faced with images produced under natu-
ral, non-white illumination the performance of our algorithm actually improves,
while intrinsic algorithms perform much worse. See Figure 1 for examples of the
output of our algorithm and of the best-performing intrinsic image algorithm.

In Section 2, we present a modification of the problem formulation of [1]. In
Sections 3, 4, and 5 we motivate and introduce three novel priors on reflectance
images: one based on local smoothness, one based on global sparsity or entropy,
and one based on the absolute color of each pixel. In Section 6 we introduce a
prior on illumination, and in Section 7 we present a novel multiscale optimization
technique that is critical to inference. In Section 8 we show results for the MIT
dataset and our own version of the MIT dataset with natural illumination, and
in Section 9 we conclude.

2 Problem Formulation

Our problem formulation is an extension of the “SAIFS” problem formulation
of [1], which is itself an extension of the “SAFS” formulation of [22]. We optimize
over a depth map, reflectance image, and model of illumination such that cost
functions on those three quantities are minimized, and such that the input image
is exactly recreated by the output shape, albedo, and illumination.

More formally, let R be a log-reflectance map, Z be a depth-map, and L be
a model of illumination, and S(Z,L) be a “rendering engine” which produces a
log-shading image given depth-map Z and illumination L. Assuming Lambertian
reflectance, the log-intensity image I is equal to R+ S(Z,L). I is observed, and
S(·) is defined, but Z, R, and L are unknown. We search for the most likely (or
equivalently, least costly) explanation for image I, which corresponds to solving
the following optimization problem:

minimize
Z,R,L

g(R) + f(Z) + h(L)

subject to I = R+ S(Z,L) (1)

where g(R) is the cost of reflectance R (roughly, the negative log-likelihood of
R), f(Z) is the cost of shape Z, and h(L) is the cost of illumination L. To
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optimize Equation 1, we eliminate the constraint by rewriting R = I − S(Z,L),
and minimize the resulting unconstrained optimization problem using multiscale
L-BFGS (see Section 7) to produce depth map Ẑ and illumination L̂, with which
we calculate reflectance image R̂ = I − S(Ẑ, L̂). When illumination is known, L
is fixed. This problem formulation differs from that of [1] in that we have a single
model of illumination which we optimize over and place priors on, rather than a
distribution over “memorized” illuminations. This is crucial, as the huge variety
of natural chromatic illuminations makes the previous formulation intractable.

To extend the grayscale model of [1] to color, we must redefine the prior on
reflectance g(R) to take advantage of the additional information present in color
reflectance images, and to address the additional complications that arise when
illumination is allowed to be non-white. Because illumination is a free parameter
in our problem formulation, we must define a prior on illumination h(L). We use
the same S(Z,L) and a modified version of f(Z) as [1] (see the supplementary
material).

Our prior on reflectance will be a linear combination of three terms:

g(R) = λsgs(R) + λege(R) + λaga(R) (2)

where the λ weights are learned using cross-validation on the training set. gs(R)
and ge(R) are our priors on local smoothness and global entropy of reflectance,
and can be thought of as multivariate generalizations of the grayscale model of
[1]. ga(R) is a new “absolute” prior on each pixel in R that prefers some colors
over others, thereby addressing color constancy.

3 Local Reflectance Smoothness

The reflectance images of natural objects tend to be piecewise smooth — or
equivalently, variation in reflectance images tends to be small and sparse. This
insight is fundamental to most intrinsic image algorithms [2, 4, 5, 14, 23], and is
used in our previous works [1, 22]. In terms of color, variation in reflectance tends
to manifest itself in both the luminance and chrominance of an image (white
transitioning to blue, for example) while shading, assuming the illumination is
white, affects only the luminance of an image (light blue transitioning to dark
blue, for example). Past work has exploited this insight by building specialized
models that condition on the chrominance variation of the input image [2, 5, 12,
14, 15]. Effectively, these algorithms use image chrominance as a substitute for
reflectance chrominance, which means that they fail when faced with non-white
illumination, as we will demonstrate. We instead simply place a multivariate
prior over differences in reflectance, which avoids this non-white illumination
problem while capturing the color-dependent nature of reflectance variation.

Our prior on reflectance smoothness is a multivariate Gaussian scale mixture
(GSM) placed on the differences between each reflectance pixel and its neighbors.
We will maximize the likelihood of R under this model, which corresponds to



Color Constancy, Intrinsic Images, and Shape Estimation 5

(a) Our GSM

smoothness prior

(b) R - a proposed

reflectance image

(c) gs(R) - cost under

our model

(d) ∇gs(R) - influence

under our model

Fig. 2. Our smoothness prior is a multivariate Gaussian scale mixture on the differ-
ences between nearby reflectance pixels (Figure 2(a)). This distribution prefers nearby
reflectance pixels to be similar, but its heavy tails allow for rare non-smooth disconti-
nuities. We see this by analyzing some image R as seen by our model. Strong, colorful
edges, such as those caused by reflectance variation, are very costly (have a low likeli-
hood) while small edges, such as those caused by shading, are more likely. But in terms
of influence — the gradient of cost with respect to each reflectance pixel — we see an
inversion: because sharp edges lie in the tails of the GSM, they have little influence,
while shading variation has great influence. This means that during inference our model
attempts to explain shading in the image by varying shape, while ignoring sharp edges
in reflectance. Additionally, because this model captures the correlation between color
channels, chromatic variation has less influence than achromatic variation (because it
lies further out in the tails), making it more likely to be ignored during inference.

minimizing the following cost function:

gs(R) =
∑
i

∑
j∈N(i)

log

(
K∑

k=1

αkN (Ri −Rj ;0,σk Σ)

)
(3)

Where N(i) is the 5×5 neighborhood around pixel i, Ri−Rj is a 3-vector of the
log-RGB differences from pixel i to pixel j, K = 40 (the GSM has 40 discrete
Gaussians), α are mixing coefficients, σ are the scalings of the Gaussians in
the mixture, and Σ is the covariance matrix of the entire GSM (shared among
all Gaussians of the mixture). The mean is 0, as the most likely reflectance
image should be flat. The GSM is learned on the reflectance images in our
training set. The differences between this model and that of [1] are: 1) we have
a multivariate rather than univariate GSM, to address color, 2) we’re placing
priors on the differences between all pairs of reflectance pixels within a window,
rather than placing a prior on the magnitude of the gradient of reflectance at each
pixel, as this produces better results, and 3) we have one single-scale prior, as
multiscale priors no longer improve results when using our improved optimization
technique. A visualization and explanation of the effect of this smoothness prior
can be found in Figure 2.

4 Global Reflectance Entropy

The reflectance image of a single object tends to be “clumped” in RGB space,
or equivalently it can be approximated by a set of “sparse” exemplars. This mo-
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tivates the second term of our model of reflectance: a measure of global entropy
which we minimize. We will build upon our previous model [1], but different
forms of this idea have been used in intrinsic images techniques [23, 12], photo-
metric stereo [24], shadow removal [25], and color representation [26]. As in [1],
we build upon the entropy measure of Principe and Xu [27], which is a model
of quadratic entropy (or Rényi entropy) for a set of points assuming a Parzen
window. This can be thought of as a “soft” and differentiable generalization of
Shannon entropy, computed on a set of points rather than a histogram.

A naive extension of the one-dimensional entropy model of [1] to three dimen-
sions is not sufficient: The RGB channels of natural reflectance images are highly
correlated, causing a naive isotropic entropy measure to work poorly. To address
this, we pre-compute a whitening transformation from training reflectance im-
ages and compute an isotropic entropy measure in this whitened space during
inference, effectively giving us an anisotropic entropy measure. Formally, our cost
function is non-normalized Rényi entropy in the space of whitened reflectance:

ge(R) = − log

∑
i

∑
j

exp

(
−
‖WRi −WRj‖22

4σ2
e

) (4)

Where W is the whitening transformation learned from training reflectance im-
ages, as follows: Let X be a 3× n matrix of the pixels in the reflectance images
in our training set. We compute the covariance matrix Σ = XXT (ignoring cen-
tering), take its eigenvalue decomposition Σ = ΦΛΦT, and from that construct
the whitening transformation W = ΦΛ1/2ΦT. σe is the bandwidth of the Parzen
window, which determines the scale of the clusters produced by minimizing this
entropy measure, and is tuned through cross-validation. See Figure 3 for a mo-
tivation of this model.

These Rényi measures of entropy are quadratically expensive to compute
naively, so others have used the Fast Gauss Transform [25] and histogram-based
techniques [1] to approximate it in linear time. The histogram-based technique
appears to be more efficient than the FGT-based methods, and provides a way
to compute the analytical gradient of entropy, which is crucial for optimization.

(a) Correct Everything

ge(R) = 0.913

(b) Wrong Shape

ge(R) = 1.325

(c) Wrong Light

ge(R) = 2.366

Fig. 3. Reflectance images and their corresponding log-RGB scatterplots. Mistakes in
estimating shape or illumination produce shading-like or illumination-like artifacts in
the inferred reflectance, causing the the RGB distribution of the inferred reflectance to
be “smeared”, and causing entropy (and therefore cost) to increase.
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We therefore use a 3D generalization of the algorithm of [1] to compute our
entropy measure. The resulting technique looks very similar to the bilateral
grid [28] used in high-dimensional Gaussian filtering, and can be seen in the
supplementary material.

5 Absolute Color

The previously described priors were imposed on relative properties of reflectance:
the differences between adjacent or non-adjacent pixels. Though this was suffi-
cient for past work, now that we are attempting to recover surface color and non-
white illumination we must impose an additional prior on absolute reflectance:
the raw log-RGB value of each pixel in the reflectance image. Without such a
prior (and the prior on illumination presented in Section 6) our model would
be equally pleased to explain a white pixel in the image as white reflectance
under white illumination as it would blue reflectance under yellow illumination,
for example.

This sort of prior is fundamental to color-constancy, as most basic color
constancy algorithms can be viewed as minimizing a similar sort of cost: the
gray-world assumption penalizes reflectance for being non-gray, the white-world
assumption penalizes reflectance for being non-white, and gamut-based models
penalize reflectance for lying outside of a gamut of previously-seen reflectances.
We experimented with variations or combinations of these types of models, but
found that a simple density model on whitened log-RGB values worked best.

Our model is a 3D thin-plate spline (TSP) fitted to the distribution of
whitened log-RGB reflectance pixels in our training set. Formally, to train our
model we minimize the following:

minimize
F

∑
i,j,k

Fi,j,k ·Ni,j,k

+ log

∑
i,j,k

exp (−Fi,j,k)

+ λ
√
J(F) + ε2

J(F) = F2
xx + F2

yy + F2
zz + 2F2

xy + 2F2
yz + 2F2

xz (5)

Where F is a 3D TSP describing cost (or non-normalized negative log-likelihood),
N is a 3D histogram of the whitened log-RGB reflectance in our training data,
and J(·) is the TSP bending energy cost (made more robust by taking its square
root, with ε2 added to make it differentiable everywhere). Minimizing the sum
of the first two terms is equivalent to maximizing the likelihood of the training
data, and minimizing the third term causes the TSP to be piece-wise smooth.
The smoothness multiplier λ is tuned through cross-validation.

During inference, we maximize the likelihood of the reflectance image R by
minimizing its cost under our learned model:

ga(R) =
∑
i

F(WRi) (6)

where F(WRi) is the value of F at the coordinates specified by the 3-vector
WRi, the whitened reflectance at pixel i (W is the same as in Section 4). To
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(a) Training reflectances (b) Our PDF of reflectance (c) Reflectances sorted by cost

Fig. 4. A visualization of our “absolute” prior on reflectance. On the left we have the
log-RGB reflectance pixels in our training set, and a visualization of the 3D thin-plate
spline PDF that we fit to that data. Our model prefers reflectances that are close to
white or gray, and that lie within gamut of previously seen colors. Though our prior is
learned in whitened log-RGB space, here it is shown in unwhitened coordinates, hence
its anisotropy. On the right we have randomly generated reflectances, sorted by their
cost (negative log-likelihood) under our model. Our model prefers less saturated, more
subdued colors, and abhors brightly lit neon-like colors. The low-cost reflectances look
like a tasteful selection of paint colors, while high-cost reflectances don’t even look like
paint at all, but instead appear almost glowing and luminescent.

make this function differentiable, we compute F(·) using trilinear interpolation.
A visualization of our model and of the colors it prefers can be seen in Figure 4.

6 Priors over Illumination

In our previous work, inference with unknown illumination involved maximizing
an expected complete log-likelihood with respect to a memorized set of ∼100 il-
luminations taken from the training set. That framework was an effective way of
both optimizing with respect to illumination (as the posterior distribution over
illuminations was re-evaluated at each step in optimization, effectively “moving”
the light around) and of regularizing illumination in a non-parametric way (as
only previously seen illuminations were considered). However, that framework re-
quires an extremely expensive marginalization over a set of illuminations, which
causes inference to be extremely slow — hours per image. That framework also
scales linearly with the complexity of the illumination, so modeling the vari-
ety of natural, colorful illuminations makes inference impossibly slow. For these
reasons, in this paper we adopt a simplified model (Equation 1) in which we ex-
plicitly optimize over a single model of illumination in conjunction with shape.
This allows us to model and recover a very wide variety of natural illuminations
(see Figure 5), while making inference effectively as fast as if illumination were
known — around 5 minutes per image. Unfortunately, this model also requires
us to explicitly define h(L), our prior on illumination.

We use a spherical-harmonic (SH) model of illumination, so L is a 27 di-
mensional vector (9 dimensions per RGB channel). In contrast to traditional SH
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(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
and it allows for easier regularization as the space of log-shading SH illumina-
tions is surprisingly well-modeled by a simple multivariate Gaussian. Training
our model is extremely simple: we fit a multivariate Gaussian to the SH illumi-
nations in our training set. During inference, the cost we impose is the negative
log-likelihood under that model:

h(L) = λL(L− µL)TΣ−1
L (L− µL) (7)

where µL and ΣL are the parameters of the Gaussian we learned, and λL is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two different datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coefficients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.
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Let us define L(X,h), which constructs a Laplacian pyramid from a signal,
L−1(Y, h), which reconstructs a signal from a Laplacian pyramid, and G(X,h),
which constructs a Gaussian pyramid from a signal. Let h be the filter used
in constructing and reconstructing these pyramids. Instead of minimizing f(X)
directly, we reparameterize X as Y = L(X,h), and minimize f ′(Y ):

[`,∇Y `] = f ′(Y ) : (8)

X ← L−1(Y, h) // reconstruct the signal from the pyramid

[`,∇X`]← f(X) // compute the loss and gradient with respect to the signal

∇Y `← G(∇X`, h) // backpropagate the gradient onto the pyramid

We then solve for X̂ = L−1(arg minY f
′(Y ), h) using L-BFGS. Other gradient-

based techniques could be used, but L-BFGS worked best in our experience.
The choice of h, the filter used for our Laplacian and Gaussian pyramids,

is crucial. We found that 5-tap binomial filters work well, and that the choice
of the magnitude of the filter dramatically affects multiscale optimization. If
‖h‖1 is small, then the coefficients of the upper levels of the Laplacian pyramid
are so small that they are effectively ignored, and optimization fails. If ‖h‖1 is
large, then the coarse scales of the pyramid are optimized and the fine scales
are ignored. The filter that we found worked best is: h = 1

4
√

2
[1, 4, 6, 4, 1], which

has twice the magnitude of the filter that would normally be used for Lapla-
cian pyramids. This increased magnitude biases optimization towards adjusting
coarse scales before fine scales, without preventing optimization from eventually
optimizing fine scales.

Note that this technique is substantially different from standard coarse-to-fine
optimization, in that all scales are optimized simultaneously. As a result, we find
much lower minima than standard coarse-to-fine techniques, which tend to keep
coarse scales fixed when optimizing over fine scales. Our improved optimization
also lets us use simple single-scale priors instead of multiscale priors, as was
necessary in our previous work [1].

This optimization technique is used to solve Equations 1 and 5. When opti-
mizing Equation 1 we initialize Z to 0 and L to µL, and optimize with respect
to a vector that is a concatenation of L(Z, h) and a whitened version of L. For
both problems, naive single-scale optimization fails badly.

8 Results

We evaluate our algorithm using the MIT intrinsic images dataset [1, 2]. The
MIT dataset has very “laboratory”-like illumination — lights are white, and
are placed at only a few locations relative to the object. Natural illuminations
display much more color and variety (see Figures 5 and 6).

We therefore present an additional pseudo-synthetic dataset, in which we
have rendered the objects in the MIT dataset using natural, colorful illumina-
tions taken from the real world. We took all of the environment maps from the
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sIBL Archive1, expanded that set of environment maps by shifting and mirroring
them, and varying their contrast and saturation (saturation was only decreased,
never increased), and produced spherical harmonic illuminations from the result-
ing environment maps. After removing similar illuminations, the illuminations
were split into training and test sets. Each object in the MIT dataset was ran-
domly assigned an illumination (such that training illuminations were assigned
to training objects, etc), and each object was re-rendered under its new illumi-
nation, using that object’s ground-truth shape and reflectance.

Our experiments can be seen in Table 1, in Figure 1, and in the supplemen-
tary material. We present four sets of experiments, with either the “laboratory”
illumination of the basic MIT dataset or our “natural” illumination dataset, and
with the illumination either known or unknown. We use the same training and
test split as in [1], with our hyperparameters tuned to the training set, and with
the same parameters used in all experiments and all figures.

For the known-lighting case our baselines are a “flat” baseline of Z = 0, four
intrinsic image algorithms (these produce shading and reflectance images, and
we then run the SFS algorithm of [1] using the recovered shading and known il-
lumination to recover shape), the achromatic technique of our previous work [1],
and the shape-from-contour algorithm of [1]. For unknown illumination, the only
existing baseline is our previous work [1]. We present two simplifications of our
model in which we apply the smoothness and entropy albedo priors of [1] to
the RGB or YUV channels of color reflectance (while still using our absolute
color and illumination priors), to demonstrate the importance of our multivari-

1 http://www.hdrlabs.com/sibl/archive.html

Laboratory Illumination Dataset Natural Illumination Dataset

Known Illumination
Algorithm N -MSE s-MSE r-MSE rs-MSE L -MSE Avg.

Flat Baseline 0.6141 0.0572 0.0452 0.0354 - 0.0866
Retinex [2, 5] + SFS [1] 0.8412 0.0204 0.0186 0.0163 - 0.0477
Tappen et al. 2005 [14] + SFS [1] 0.7052 0.0361 0.0379 0.0347 - 0.0760
Shen et al. 2011 [15] + SFS [1] 0.9232 0.0528 0.0458 0.0398 - 0.0971
Gehler et al. 2011 [12] + SFS [1] 0.6342 0.0106 0.0101 0.0131 - 0.0307
Barron & Malik 2012A [1] 0.2032 0.0142 0.0160 0.0181 - 0.0302
Shape from Contour [1] 0.2464 0.0296 0.0412 0.0309 - 0.0552

Our Model (Complete) 0.2151 0.0066 0.0115 0.0133 - 0.0215

Unknown Illumination
Barron & Malik 2012A [1] 0.1975 0.0194 0.0224 0.0190 0.0247 0.0332

Our Model (RGB) 0.2818 0.0090 0.0118 0.0149 0.0098 0.0213
Our Model (YUV) 0.2906 0.0110 0.0171 0.0182 0.0126 0.0263
Our Model (No Light Priors) 0.5215 0.0301 0.0273 0.0285 0.2059 0.0758
Our Model (No Absolute Prior) 0.3261 0.0124 0.0195 0.0189 0.0166 0.0301
Our Model (No Smoothness Prior) 0.2727 0.0105 0.0179 0.0223 0.0125 0.0270
Our Model (No Entropy Model) 0.2865 0.0109 0.0161 0.0152 0.0141 0.0255
Our Model (White Light) 0.2221 0.0082 0.0112 0.0136 0.0085 0.0188
Our Model (Complete) 0.2793 0.0075 0.0118 0.0144 0.0100 0.0205

Known Illumination
Algorithm N -MSE s-MSE r-MSE rs-MSE L -MSE Avg.

Flat Baseline 0.6141 0.0246 0.0243 0.0125 - 0.0463
Retinex [2, 5] + SFS [1] 0.4258 0.0174 0.0174 0.0083 - 0.0322
Tappen et al. 2005 [14] + SFS [1] 0.6707 0.0255 0.0280 0.0268 - 0.0599
Gehler et al. 2011 [12] + SFS [1] 0.5549 0.0162 0.0150 0.0105 - 0.0346
Gehler et al. 2011 [12] + [11] + SFS [1] 0.6282 0.0163 0.0164 0.0106 - 0.0365
Barron & Malik 2012A [1] 0.2044 0.0092 0.0094 0.0081 - 0.0195
Shape from Contour [1] 0.2502 0.0126 0.0163 0.0106 - 0.0271

Our Model (Complete) 0.0867 0.0022 0.0017 0.0026 - 0.0054

Unknown Illumination
Barron & Malik 2012A [1] 0.2172 0.0193 0.0188 0.0094 0.0206 0.0273

Our Model (RGB) 0.2373 0.0086 0.0072 0.0065 0.0104 0.0159
Our Model (YUV) 0.3064 0.0095 0.0088 0.0072 0.0110 0.0183
Our Model (No Light Priors) 0.3722 0.0141 0.0149 0.0118 0.1491 0.0424
Our Model (No Absolute Prior) 0.1914 0.0124 0.0106 0.0036 0.0136 0.0165
Our Model (No Smoothness Prior) 0.2700 0.0084 0.0071 0.0065 0.0090 0.0157
Our Model (No Entropy Prior) 0.2911 0.0080 0.0067 0.0054 0.0109 0.0155
Our Model (White Light) 0.6268 0.0211 0.0207 0.0089 0.0647 0.0437
Our Model (Complete) 0.2348 0.0060 0.0049 0.0042 0.0084 0.0119

Table 1. A comparison of our model against others, on the “laboratory” MIT intrinsic
images dataset [1, 2] and our own “natural” illumination variant, with the illumination
either known or unknown. Shown are the geometric means of five error metrics (exclud-
ing L -MSE when illumination is known) across the test set, and an “average” error
(the geometric mean of the other mean errors). N -MSE, L -MSE, s-MSE, and r-MSE
measure shape, illumination, shading, and reflectance errors, respectively, and rs-MSE
is the error metric of [2], (where it is called “LMSE”) which measures shading and
reflectance errors. These metrics are explained in detail in the supplementary material.
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ate models. We also present an ablation study in which priors on reflectance
or illumination are removed, and in which illumination is forced to be white
(achromatic) during inference.

For our “natural” illumination dataset, we use the same baselines (except
for [15], as their code was not available). We also evaluate against the intrinsic
image algorithm of Gehler et al. [12] after having run a contemporary white-
balancing algorithm [11] on the input image, which shows that a “color con-
stancy” algorithm does not fully address natural illumination for this task.

For the “laboratory” case, our algorithm is the best-performing algorithm
whether or not illumination is known. Surprisingly, performance is slightly bet-
ter when illumination is unknown, possibly because optimization is able to find
more accurate shapes and reflectances when illumination is allowed to vary. The
shading and reflectances produced by Gehler et al. [12] seem equivalent to ours
with regards to rs-MSE, s-MSE, and r-MSE (the metrics that consider shading
and reflectance). However, when SFS is performed on their shading, the resulting
shapes are much worse than ours in terms of N -MSE (the metric that consider
shape). This appears to happen because, though this algorithm produces very
accurate-looking shading images, that shading is often inconsistent with the
known illumination or inconsistent with itself, causing SFS to produce a con-
torted shape. We see that treating color intelligently works better than a naive
RGB or YUV model, and much better using only grayscale images (Barron and
Malik 2012A [1]). The ablation study shows that all priors contribute positively:
removing any reflectance prior hurts performance by 30-50%, and removing the
illumination prior completely cripples the algorithm. Constraining the illumina-
tion to be white helps performance on this dataset, but would presumably make
our model generalize worse on real-world images.

For the “natural” illumination case, we outperform all other algorithms by
a very large margin — our error is less than 40% of the best-performing intrin-
sic image algorithm (20% if illumination is known). This shows the necessity
of explicitly modeling chromatic illumination. While our complete model out-
performs all other models, the “white light” case often underperforms many
other models, even the achromatic model of [1]. This shows that attempting
to use color information in the presence of non-white illumination without tak-
ing into consideration the color of illumination can actually hurt performance.
For example, in the “laboratory” MIT dataset, our model performs equivalently
to Gehler et al. in some error metrics, but in the “natural” illumination case,
Gehler et al. and the other intrinsic image algorithms all perform significantly
worse than our model. Because these intrinsic image algorithms rely heavily on
color cues and assume illumination to be white, they suffer greatly when faced
with colorful “natural” illuminations. In contrast, our model actually performs
as well or better in the “natural” illumination case, as it can exploit color illumi-
nation to better disambiguate between shading and illumination (Figure 2), and
produce higher-quality shape reconstructions (Figure 6). See the supplementary
material for many examples of the output of our model and others, for all four
experiments.
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(a) Achromatic

illumination

(b) Achromatic

isophotes

(c) Chromatic

illumination

(d) Chromatic

isophotes

Fig. 6. Chromatic illumination dramatically helps shape estimation. Achromatic
isophotes (K-means clusters of log-RGB values) are very elongated, while chromatic
isophotes are usually more tightly localized. Therefore, under achromatic lighting a
very wide range of surface orientations appear similar, but under chromatic lighting
only similar orientations appear similar.

9 Conclusion

We have extended our previous work [1] to present the first unified model for
recovering shape, reflectance, and chromatic illumination from a single image,
unifying the previously disjoint problems of color constancy, intrinsic images,
and shape-from-shading. We have done this by introducing novel priors on local
smoothness, global entropy, and absolute color, a novel prior on illumination,
and an efficient multiscale optimization framework for jointly optimizing over
shape and illumination.

By solving this one unified problem, our model outperforms all previously
published algorithms for intrinsic images and shape-from-shading, on both the
MIT dataset and our own “naturally” illuminated variant of that dataset. When
faced with images produced under natural, chromatic illumination, the perfor-
mance of our algorithm improves dramatically because it can exploit color in-
formation to better disambiguate between shading and reflectance variation,
and to improve shape estimation. In contrast, other intrinsic image algorithms
(which incorrectly assume illumination to be achromatic) perform very poorly
in the presence of natural illumination. This suggests that the “intrinsic image”
problem formulation may be fundamentally limited, and that we should refocus
our attention towards developing models that jointly reason about shape and
illumination in addition to shading and reflectance.

Acknowledgements: J.B. was supported by NSF GRFP and ONR MURI N00014-10-10933.
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