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Abstract—This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives, in the presence
of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify
exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we
exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry,
regardless of the form of isotropic BRDF. For the problem of shape from shading, we show that a reconstruction may be performed up to
isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial
and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric
invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow, however, it does not suffer from the aperture
problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well
as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the
surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information,
but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.

Index Terms—Surface reconstruction, general BRDF, photometric invariants, differential theory.
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1 INTRODUCTION

THe image formation process is an interplay between the
geometry of a scene, its reflectance properties and the

illumination conditions under which it is observed. Photo-
metric reconstruction methods seek to recover shape from
images using shading cues, possibly under varying illumination.
For Lambertian scenes, there exist wide-ranging theories of
photometric stereo and shape-from-shading to recover shape
from image intensities and gradients, respectively. However,
the theoretical relationships between image gradients and
surface geometry, for general BRDFs and unknown light source
motions, remains largely unexplored.

This paper presents a fundamental study of the utility
of image gradients for scene inference in the presence of
complex BRDFs and unknown light directions. We delineate
exact topological classes up to which scene structure may
be determined when BRDF and lighting are unknown. We
also specify simple geometric priors that suffice for further
disambiguating the full Euclidean structure and present practical
reconstruction algorithms for the same. Some aspects of our
theory are illustrated in Figure 1.

We begin with the observation in Section 4 that a single
image formation equation yields several differential equations
when spatial and temporal derivatives of the image are
considered. Moreover, these differential equations are linear in
the BRDF derivatives, so under appropriate conditions (such
as circular motion of the light source), they may be eliminated
to yield a photometric invariant that relates image derivatives,
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surface geometry and light source directions.
As an initial demonstration, we show in Section 5 that for

the problem of shape from shading with a colocated light
source, such an invariant is easy to derive. The form of the
invariant readily indicates that for an unknown BRDF, surface
reconstruction is possible, at best, up to the level curves of the
magnitude of the gradient. The major theoretical development
in the paper, covering Sections 6 to 8, focuses on the problem
of photometric stereo, where we assume that a differential
pair of lights undergo unknown motion on a circle. In a series
of results, we show that the seemingly complex form of the
corresponding invariant, upon careful analysis, yields a rich
description of the surface structure.

A surprising discovery in Section 6 is that for isotropic
BRDFs, it is possible to uncover such an invariant that is
independent of lighting directions. Thus, we do not require
calibrated measurements of the circular motion of the dif-
ferential pair. Moreover, we show that the N × 3 matrix
whose columns are the image derivatives at a pixel under
N light source positions, must be rank 2 and its null vector,
(λ, κ, 1)>, is determined by surface geometry alone. The form
of this invariant bears a striking resemblance to the optical flow
relation, so we call it photometric flow. However, in constrast to
optical flow, photometric flow stems from correctly accounting
for and eliminating complex BRDF effects, rather than any
physically inaccurate brightness constancy assumptions.

For a surface z(x, y) : R2 → R, the entities λ and κ are
space varying functions whose relationship to surface depths,
z, or gradients ∇z, is not straightforward at first glance. Yet,
we show in Section 7 that the information contained in those
functions can be succinctly expressed as the direction of the
surface gradient and the direction of the gradient of the scalar
field ‖∇z‖. Thus, from image information alone, one may
determine surface structure up to level curves of constant depth
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Fig. 1. An outline of our differential theory of photometric stereo, covered in Sections 6 to 8. Two or more differential pairs lead to an uncalibrated
photometric invariant. Isocontours of constant ‖∇z‖ and constant z may be recovered from the invariant. Additional information in the form of gradient
at a single point suffices to recover depths. Normals on a curve or depths on the boundary can be used for a more noise robust estimation.

and isocontours of constant magnitude of the gradient. Further,
we show that for general surfaces where these two sets of
isocontours intersect transversally, surface normal information
at a single point suffices to determine depth over the entire
surface. Thus, in theory, differential photometric stereo allows
recovery of surface depths from unknown light positions on a
circle, for unknown isotropic BRDFs.

While the theory suggests an elegant algorithm for depth re-
construction, recovering isocontours of constant depth requires
higher-order derivatives, which may lead to noisy estimation.
For practical applications, Section 8 presents two additional
algorithms that require only first-order image derivatives
to recover surface normals and depths, resepectively, given
additional information in the form of normals on a curve, or
depths at the boundary. Figure 1 outlines our major theoretical
results for differential photometric stereo.

Throughout the paper, we validate the theoretical results with
several synthetic and real data examples. Implementation details
and a simple acquisition setup for differential photometric
stereo are presented in Section 9. We highlight the scope of
this work with a discussion of future directions in Section 10.

To summarize the above discussion, this paper introduces
a comprehensive theory of photometric reconstruction using
image derivatives, resting on several fundamental contributions:

• Novel photometric invariants that relate image derivatives
to the geometry of a surface with arbitrary isotropic BRDF,
without requiring light positions.

• In a shape from shading framework, recovery of isocon-
tours of constant magnitude of gradient.

• In a photometric stereo framework, a photometric flow
relates surface geometry directly to image derivatives,
with no dependence on light source positions.

• Two differential measurements suffice to extract surface
information from the photometric flow relation.

• Recovery of isocontours of constant depth and constant
magnitude of the gradient from photometric flow.

• Theoretical recovery of entire surface depth by specifying
the surface normal at a single point.

• Practical algorithms for surface normal or depth estimation
that require only lower order derivatives.

2 RELATED WORK

This work differs from most prior studies in considering differ-
ential information within the context of photometric stereo, with
unknown BRDF and light directions. Our theoretical results
distinguish this work by establishing a minimal requirement of
two differential pairs for 3D reconstruction. This paper extends
a preliminary version [4] to present shape from shading and
photometric stereo in a combined framework.

Most prior work in photometric stereo has dealt with
Lambertian surfaces, for which the surface normal can be
recovered from three images [21]. In some cases, specularity
removal has been used as a pre-processing step [3].

Hertzmann and Seitz use example-based methods for general
BRDFs, but require a reference object of the same material
[8]. Helmholtz stereopsis [23] eliminates the BRDF by ex-
ploiting reciprocity, but needs active control of both light and
camera positions. Tan et al. use color-based separation of the
diffuse and specular components of dichromatic reflectance for
reconstruction [19]. Using a large number of images allows
BRDF-invariant reconstructions using properties like BRDF
monotonicity [9] or isometric relationships between radiance
profile and surface normal distances [17]. Further empirical
properties of the BRDF can be exploited to recover shape, but
require dense coverage of the lighting hemisphere [2], [10].

Isocontours of constant depth are recovered by Alldrin and
Kriegman [1] using bilateral symmetry of a spatially varying
BRDF. They require a dense configuration of known lights on
a circle and initial information on a curve to recover depth.
Tan and Zickler [20] further recover isocontours of constant
magnitude of the gradient, whereby initial information at a
single point suffices. In contrast, our theory does not depend
on pointwise BRDF symmetries, rather uses image derivatives.
Instead of the dense, calibrated ring of lights of [1], [20], we
need as few as two differential pairs, at unknown positions
on a circle. While the results of [20] are derived only for the
gnomonic projection, our theory holds for many projections
(see Sec. 3.1). Thus, we can also recover isocontours of constant
depth as well as constant magnitude of the gradient, but our
derivations are more general and may lead to other interesting
topological classes in 3D reconstruction.
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A related work that uses differential information to derive
photometric invariants is Clark’s active photometric stereo [5].
However, it recovers depth using a distance-dependent imaging
model and calibrated source positions.

Besides photometric stereo, image derivatives have been
considered in other contexts. Shape from shading seeks to
recover depth from a single image of a Lambertian surface
[14], [22]. In computer graphics, Ramamoorthi et al. have
studied the first-order behavior of reflection as a convolution
and visibility under area lighting [16]. Optical flow uses spatial
and temporal derivatives for recovering the motion field [13].
Indeed, the form of our photometric invariant bears a striking
resemblance to the optical flow constraint. However, our theory
neither relies on assumptions like brightness constancy, nor
does it suffer from the aperture problem.

3 IMAGE FORMATION FOR ISOTROPIC BRDFS

Throughout this paper, the object and the camera are assumed
to be fixed, while a directional point light source may move
around the object. The principal axis of the camera is oriented
along v̂ = (0, 0, 1)>, pointing towards the origin. We assume
orthographic projection and the object is represented by a
surface z(x, y), where x = (x, y)> is a point on the image
plane. Unless stated otherwise, a 2-vector on the real plane R2

is represented as w, whereas a unit 3-vector on the 2-sphere
S2 ⊂ R3 is represented as ŵ. For a vector w ∈ R2, we denote
l(w) =

√
‖w‖2 + 1. The notation fx stands for the partial

derivative of the function f with respect to the variable x.

3.1 A Note on Surface Normal Parameterizations

The relationship between the unit normal n̂ on the 2-sphere and
its representation n is determined by the projection mapping
π : S2 → R2 [11]. For a gnomonic projection, from the center
of the sphere to the tangent plane resting on the north pole,

n̂ =
(n>, 1)>

l(n)
. Also, recall that the unit surface normal, n̂, is

related to the surface gradient, ∇z = (zx, zy)>, as

n̂ =
(−zx,−zy, 1)>√
z2x + z2y + 1

. (1)

Thus, for a gnomonic projection, n = [−zx,−zy]>. For a
stereographic projection centered on the south pole, n̂ =
(2n>, l(n)2 − 2)>

l(n)2
. Similarly, we represent a directional point

light source ŝ by a 2-vector, s. Figure 2 illustrates the two
parameterizations.

For the gnomonic projection, n = [−zx,−zy]>, so it
provides a linear relationship between the surface normal and
the gradient. But it maps normals on the occluding contour to
infinity, while the stereographic projection is always guaranteed
to be finite. For our practical implementations, we choose one
of the above two mappings. However, the theory of the paper
is independent of this choice and is valid for both projections
(and indeed, for any other centered on the line joining the
north and south poles).

S

O

N

n̂

ˆn = �g (n)
ˆn = �s (n)

Fig. 2. An illustration of the two possible parameterizations for the
surface normal. The gnomonic projection (red line) is denoted n = πg(n̂)
and the stereographic projection (purple line) is denoted n = πs(n̂).

3.2 Parameterizing Isotropic BRDFs
We develop our theory for homogeneous isotropic BRDFs.
Such reflectance functions depend only on the three angles
between the unit normal n̂, the light source direction ŝ and the
viewing direction v̂, thus, they can be represented as a function
of the form ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂). For gnomonic projection, the
angles that determine the isotropic BRDF are

n̂>ŝ =
n>s + 1

l(n)l(s)
, n̂>v̂ =

1

l(n)
, ŝ>v̂ =

1

l(s)
. (2)

For a stereographic projection, these angles are given by

n̂>ŝ =
4n>s

l(n)2l(s)2
+

(
2

l(n)2
− 1

)(
2

l(s)2
− 1

)
,

n̂>v̂ =
2

l(n)2
− 1, ŝ>v̂ =

2

l(s)2
− 1. (3)

Thus, the BRDF can always be written as a function of the
form ρ̂(n>s, l(n), l(s)), appropriately defined from ρ̄:

ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂) = ρ̂(n>s, l(n), l(s)) = ρ̂(α, β, γ), (4)

where, we denote α = n>s, β = l(n), γ = l(s) for the
parameters of an isotropic BRDF. It may be verified that the
same is true for a stereographic projection. Note that for the
case of photometric reconstruction, the object is fixed with
respect to the camera coordinate system, while the distant light
source may move across images. Thus, n depends only on
space variables x, while s depends only on time variable t.

3.3 Ratio images
The image formation model can be easily generalized to:

E(x, t) = a(x) ρ̂ (α(x, t), β(x), γ(t)), (5)

where a(x) is a surface albedo. This is a reasonable model
and in particular, subsumes the Lambertian assumption of
traditional photometric stereo, while allowing for more general
isotropic BRDFs, possibly modulated by a spatially-varying
texture or albedo. In fact, we make no assumptions on the
form of the isotropic BRDF ρ̂.

In practice, one may eliminate the pointwise albedo a(x)
by considering ratio images. Note that ratios of arbitrarily
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illuminated images need not preserve the functional dependence
of the isotropic BRDF on α, β and γ. But ratios with respect
to the image obtained from a light source colocated with the
sensor, that is, s = (0, 0)>, do preserve the desired form of the
BRDF. It can be easily seen from (4) that such ratio images,
denoted by I , have the form

I(x, t) =
a(x) ρ̂(α, β, γ)

a(x) ρ̂(β)
= ρ(α, β, γ), (6)

where ρ(·) is the appropriately defined function. The exact
form of ρ̄(·), ρ̂(·) or ρ(·) is not important for us, since we will
derive our photometric invariant by eliminating it.

Alternatively, one may also take ratios with respect to an
image under uniform (floodlit or cloudy sky) illumination.

4 DIFFERENTIAL PHOTOMETRIC INVARIANTS

The key idea that we use to derive our invariants is the linearity
of chain rule differentiation. Suppose the image observed at
pixel (x, y) at time t is given by I(x, y, t) = ρ(w), where
w = (w1, · · · , wm)> ∈ Rm represents reflectance parameters
that depend on geometry, lighting and camera. We assume
that the functional forms of the parameters wi(x, y, t) are
known (for instance, lighting direction, half-angle, viewing
direction and so on), but the functional form of the BRDF ρ(·)
is unknown. Then, the spatial and temporal derivatives are:

Ix =

m∑
i=1

ρwi
wi,x , (7)

Iy =

m∑
i=1

ρwi
wi,y , (8)

It =

m∑
i=1

ρwi
wi,t . (9)

Note that there may be imaging scenarios where it is possible
to have other independent derivatives, not restricted to image
plane coordinates (x, y) or a temporal variable (t).

The linearity of the chain rule leads to a natural factorization
of the derivative relations into geometry and BRDF-dependent
terms: Ix

Iy
It

 =

 w1,x · · · wm,x
w1,y · · · wm,y
w1,t · · · wm,t


 ρw1

...
ρwm

 . (10)

For convenience, we express this in the form:

∇I = G∇ρ. (11)

Define the matrix U = [G| − ∇I], then clearly

U
[
(∇ρ)>, 1

]>
= 0. (12)

Thus, U is rank-deficient and when it is a square matrix, we
can demand the condition that

detU = 0, (13)

which is an equation that relates the surface normal, light
directions, their derivatives and measured image derivatives.

Importantly, it is a relation which does not depend on the
functional form of the BRDF ρ.

The following sections derive such invariants for the par-
ticular problems of shape from shading and photometric
stereo. While deriving the invariants is straightforward, the real
challenge lies in relating them to surface shape in a manner that
facilitates reconstruction. As we show throughout the remainder
of this paper, careful analysis of the structure of these invariants
yields fundamental insights into the extent to which shape may
be reconstructed even with a complex, unknown BRDF.

5 SHAPE FROM SHADING

While the primary focus of this paper is on photometric stereo,
as a simple initial application, we consider the problem of shape
from shading (SFS). Prior work has extensively studied the
shape from shading differential equations for the Lambertian
case [22]. Extensions to general BRDFs have been considered,
but limited to known, parametric reflectance models, such
as Torrance-Sparrow [12]. We use our theory to extend the
analysis to general, unknown isotropic BRDFs.

It is common to assume in shape from shading frameworks
that the light source is colocated with the sensor and the scene
albedo is constant [15]. With the source and sensor colocated at
(0, 0, 1)>, note that l(s) = 1 and n>s = 0. Thus, the isotropic
BRDF in (4) reduces to a function of the single parameter

β = l(n) =
1√

‖∇z‖2 + 1
. Defining δ = ‖∇z‖, the image

formation equation for a colocated source and sensor may
equivalently be rewritten as

I(x, y) = ρ(δ(x, y)). (14)

The differential image formation equations corresponding to
(12) are [

δx −Ix
δy −Iy

] [
ρδ
1

]
=

[
0
0

]
, (15)

whereby the determinant condition in (13) leads to the relation

Ix
Iy

=
δx
δy

=
‖∇z‖x
‖∇z‖y

. (16)

While (16) represents a simple first-order linear PDE in δ, it
will be useful for subsequent results in this paper to characterize
the solution by the following proposition:

Proposition 1. From a single image of a surface, obtained us-
ing a colocated source and sensor, one may recover isocontours
of constant magnitude of the surface gradient.

Proof: For a surface z(x, y), consider the scalar field
g(x, y) = ‖∇z(x, y)‖. The gradient associated with this field
is given by ∇g = (‖∇z‖x, ‖∇z‖y)

>. It is well-known that
the level curves g(x, y) = c, for constant c, are orthogonal
to the gradient ∇g. The direction of the tangent to the level

curves is
‖∇z‖y
‖∇z‖x

, which is the same as
Iy
Ix

, from (16). Thus,

from a single image, one may trace the isocontours of constant
‖∇z(x, y)‖, using the knowledge of their tangent directions.
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Fig. 3. Illustration of Proposition 1 on synthetic data corresponding to
(a) a vase and (b) a Mozart figurine. Given a single image from a sensor
colocated with a light source, isocontours of constant ‖∇z‖ are computed.
All points on the red curves have the same depth as the corresponding
blue dot. The ground truth depth map is shown for reference in the inset.

Fig. 4. Given a single real image of (a) a plastic spoon and (b) a
plastic shell, the result of Proposition 1 is used to plot isocontours of
constant ‖∇z‖, shown in red, starting from the points marked in blue. No
radiometric calibration of the input image is required.

5.1 Experimental Evaluation
We illustrate the result of Proposition 1 on synthetic and real
data. In Figure 3, we show the recovered isocontours of constant
‖∇z‖ on synthetic vase and Mozart data obtained from [22].

For real data experiments, we place a light bulb close to the
camera to approximate a colocated source and sensor. Note
that no radiometric calibration is required, since the camera
response function is subsumed in the BRDF function ρ. In
Figure 4, the recovered isocontours of constant ‖∇z‖ are shown
on real images of a plastic spoon and a plastic shell.

6 PHOTOMETRIC STEREO

The remainder of this paper deals with photometric reconstruc-
tion using images of a stationary object, acquired with a fixed
orthographic camera, under multiple illumination conditions.
This problem is commonly referred to as photometric stereo.
Allowing motion of the light source (as opposed to shape from
shading, where we have a single, fixed light source), makes
the images dependent on an additional temporal variable (such
as time, or an arc length parameter if motion is along a curve).

A common approach to shape recovery from photometric
information is through invariants that relate the image inten-
sities to surface geometry and light source directions. Most
prior works focus on restricted classes of BRDF, such as a
Lambertian one. However, one may deal with complex BRDFs

if they can be eliminated from a system of equations, as outlined
in our general framework of Section 4. In this section, we use
differential information to derive such an invariant. A surprising
and useful result is that our invariant does not depend on light
source positions, so it is in fact an uncalibrated invariant.

6.1 Differential Images

Intuitively, a single image formation equation yields several
relations upon differentiation with respect to various space or
time variables. These may be combined by eliminating any
terms that depend on the functional form of the BRDF. We
now use this intuition to derive a novel photometric invariant.

The space and time derivatives of the images in (6) are

∇xI(x, t) = ραJ
>(n)s + ρβ

1

l(n)
J>(n)n , (17)

It(x, t) = ραs
>
t n + ργ

1

l(s)
s>t s , (18)

where α, β, γ are defined previously and J(n) = [nx,ny] is
the 2× 2 Jacobian related to the second fundamental form, II
[6]. (For the gnomonic projection, J(n) = l(n) · II .)

This system of three equations (note that (17) represents two
equations) is clearly underconstrained, with the unknowns ρα,
ρβ , ργ , n and s. However, one way to extract constraints on
the normal might be to eliminate the BRDF derivatives, which
can be done from these three equations if one of ρα, ρβ or ργ
terms can be made to identically vanish. This can be achieved
in a setup of circular motion, as discussed next.

6.2 Circular Motion Yields an Invariant

Let us constrain the source to move in a circle around the
camera axis. Intuitively, since ‖s‖ is now constant, γ stays
constant. Thus, the isotropic BRDF reduces to a 2D function,
which allows elimination of derivatives with respect to α and β.
Mathematically, s>t s = 0 for lights on a circle, so the system
of three differential equations in (17) and (18) reduces to a
form analogous to (12):

s>nx
1

l(n)
n>nx −Ix

s>ny
1

l(n)
n>ny −Iy

s>n 0 −It


 ρα
ρβ
1

 =

 0
0
0

 . (19)

The determinant condition of (13) leads to the relation

Ixs
>
t n− Its>nx

Iys>t n− Its>ny
=

n>nx
n>ny

. (20)

Clearly, the right hand side depends only on position, while
the left hand side contains time-dependent entities. Thus, a
photometric invariant that relates image derivatives, surface
geometry and light directions can be expressed as

Ixs
>
t n− Its>nx

Iys>t n− Its>ny
= constant across time. (21)
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6.3 The Invariant Is Independent of Light Positions
It might seem at a first glance that, given light source positions,
a non-linear minimization framework can be used to solve for
the unknowns {n,nx,ny}, up to scale, using the constraint in
(20). However, as we show below, the light source directions
are not required at all. That is, the invariant (21) directly relates
image derivatives to surface geometry.

Proposition 2. The entire information in the photometric
invariant (21) is encapsulated by two entities, which depend
only on surface geometry and not on source positions s.

While the above may seem surprising given the presence
of light source terms in (21), a closer look at the structure of
(21) immediately proves the above proposition.

Proof: Defining

λ =
n>nx
n>ny

, u = nx − λny, (22)

we can rewrite (20) as

Ix − λIy
It

=
s>u

s>t n
= κ. (23)

By definition, λ depends only on the surface normal and
is constant across time (that is, independent of light source
positions). Also, by definition of λ and u in (22), we have
u>n = 0, that is, u is orthogonal to n. Since the lights lie
on a circle, st is also orthogonal to s. Moreover, at time t (or
equivalently, angular position on the circle of sources), the light
source is s = (r cos t, r sin t)>. Then, st = (−r sin t, r cos t)>,
thus, ‖s‖ = ‖st‖. It follows that κ is actually the (signed) ratio
of the magnitudes of u and n. 1

Indeed, with n⊥ = (−n2, n1)>, it immediately follows:

u = −κn⊥. (24)

Thus, we have the following constraint, equivalent to the
invariant in (20), but which does not depend on knowledge of
light source positions:

Ix − λIy − κIt = 0. (25)

Clearly, all the information in the invariant is encapsulated by
λ and κ, which depend only on surface geometry.

6.4 Importance of the Invariant
The result of Proposition 2 is a surprising one and in fact, can be
understood as a fundamental relationship between spatial and
temporal derivatives of images arising from isotropic BRDFs:

Corollary 3. For a surface with isotropic BRDF, the N × 3
matrix of spatial and temporal image derivatives at a pixel,
recorded for N > 1 unknown light positions on a circle, must
be rank 2. In addition, the null-vector, denoted (λ, κ, 1)>,
depends only on the surface geometry.

1. In practice, the temporal derivative is obtained as a difference between
images at time t and t+ δt, so asserting ‖s‖ = ‖st‖ assumes that the angular
difference δt betwen the lights of the rotating differential pair is known. This
is the same as the ratio of their distance and the radius of the circle on which
they are situated. Note that just an unmarked piece of string may suffice to
create any integral ratio.

Fig. 5. The ratio of image derivatives at a pixel, recorded for various

light positions, lie on a straight line given by the equation λ
Iy

Ix
+κ

It

Ix
= 1.

The above is also useful practically, since it raises the
possibility that surface information may be recovered from
image derivatives in photometric stereo for isotropic BRDFs,
without knowledge of light source positions. In fact, as few
as two differential image pairs suffice to estimate λ and κ by
solving a small linear system. This is an important observation:

Corollary 4. Two pairs of differential images suffice to recover
surface information contained in the invariant of (21).

Note that three light sources can create two differential pairs.
It is instructive to recall that traditional photometric stereo
for Lambertian surfaces requires three images to completely
determine the surface normal.

At this stage, it is natural to seek a characterization of the
exact surface information recoverable from λ and κ. In the
following section, we will show that knowledge of λ and κ,
together with initial information at a single point, suffices to
completely determine the surface depths.

6.5 Experimental Evaluation

Here, we empirically illustrate the validity of the relation in
(25). A differential pair of lights is moved on a circle and real
images of a plastic apple of varying albedo are acquired at
11 unknown light positions. Ratio images are computed with
respect to a floodlit image.

Figure 5 illustrates that the ratios
Iy
Ix

and
It
Ix

computed for

the 11 different light positions lie close to a straight line. The
entities λ and κ are given by the best-fit straight line.

7 PHOTOMETRIC FLOW

It is tempting to compare the form of equation (25) to the
optical flow relation [13]. Thus, we refer to (25) as the photo-
metric flow relation. However, we note that the photometric flow
relation is derived without resorting to a brightness constancy
assumption and as established by Corollary 4, recovery of λ
and κ in a photometric stereo setup does not suffer from the
aperture problem.
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(a) (b) (c) (d)

Fig. 6. Recovery of isocontours of constant ‖∇z‖. Red curves plot the isocontours, while the green dots represent points chosen to start
tracing the curves. (a) A sphere with variable albedo and simplified Torrance-Sparrow BRDF. (b) A vase with Blinn-Phong BRDF. (c) A bunny with
Torrance-Sparrow BRDF. (d) Ground truth isocontours for the bunny.

The previous section demonstrates that the entire information
in the photometric flow can be expressed (and recovered) in
terms of the two entities λ and κ. However, it is not immediately
clear what that means in terms of surface reconstruction. We
answer that conclusively in the present section.

7.1 Isocontours of Constant ‖∇z‖
To begin, we show that one may recover isocontours where
magnitude of the gradient, ‖∇z‖, stays constant.

Corollary 5. From two or more differential images of a surface,
obtained from unknown light source positions, one may recover
isocontours of constant magnitude of the surface gradient.

Proof: This follows directly from the definition of λ in
Proposition 2:

λ =
n>nx
n>ny

=
‖n‖y
‖n‖x

. (26)

The remainder of the proof follows that of Proposition 1.

In the context of photometric stereo, prior work by Tan and
Zickler has recovered isocontours of constant ‖∇z‖, but relying
on properties of the gnomonic projection [20]. In contrast, note
that our proof is actually more general than the statement of
Corollary 5. It may be easily verified by the reader that the
isocontours of constant ‖n‖ are the same for any n derived
from a projection centered on the line joining the poles. In the
context of the gnomonic projection where n = ∇z, isocontours
of constant ‖n‖ are called isoslope contours in [20].

7.1.1 Experimental Evaluation
In Figure 6, we illustrate the recovery of isocontours of constant
‖∇z‖ using synthetic data. For the images of a synthetic sphere
of varying albedo and the synthetic bunny, we use a simplified
Torrance-Sparrow model

ρ̄ =
1

4πσ2
exp

−(cos−1 n̂>ĥ

σ

)2
 , ĥ =

ŝ + v̂

‖ŝ + v̂‖
.

(27)
with σ = 0.3. For images of the vase of varying albedo, we use
a constant coefficient Phong-Blinn model: ρ̄ = n̂>ŝ+ (n̂>ĥ)σ ,
with a typical value of σ = 5.

In each case, we observe that the recovered isocontours of
constant ‖∇z‖ match the ground truth very closely.

7.2 Isocontours of Constant Depth
To recover isocontours of constant ‖n‖, we required knowledge
only of λ. However, we should be able to further disambiguate
the surface using κ. Indeed, we now give a constructive proof
that λ and κ together determine the isocontours of constant
depth (in addition to the isocontours of constant ‖∇z‖).

Proposition 6. From two or more differential images of a
surface, obtained from unknown source positions, one may
recover the direction of the surface gradient at every point.

Proof: Let us denote n = (p, q)>, thus, nx = (px, qx)>

and ny = (py, qy)>. Given two or more pairs of differential
images, one may estimate λ(x, y) and κ(x, y) using the linear
relation in (25). Thereby, one obtains two linear, first order
PDEs from (24) at every pixel:

px − λ(x, y)py = κ(x, y)q , (28)
qx − λ(x, y)qy = −κ(x, y)p . (29)

Further, since we are dealing with a surface, it must satisfy
the integrability condition:

py − qx = 0. (30)

Thus, we have a coupled first order system of three linear
PDEs in the two variables p and q. Note that this is an
overdetermined system, which may not be solvable in general.
However, in our particular case, we can exploit the special
form of the PDEs to derive an unusual solution.

Consider the function h = p−λq. Taking partial derivatives,
we get

hx = px − λqx − λxq
= px − λpy − λxq = (κ− λx)q, (31)

hy = py − λqy − λyq
= qx − λqy − λyq = −κp− λyq. (32)

By integrability of h, we have hxy = hyx, which gives us
another first order linear PDE:

(λx − κ)qy − λyqx − κpx = κxp+ κyq. (33)
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Thus, from (28), (29), (30) and (33), we have a linear system
in {px, py, qx, qy}, given by

1 −λ 0 0
0 0 1 −λ
0 1 −1 0
−κ 0 −λy λx − κ



px
py
qx
qy

 =


κq
−κp

0
κxp+ κyq

 ,
(34)

whereby expressions for {px, py, qx, qy} are obtained in terms
of linear functions of {p, q}:

px = ν1p+ η1q, py = ν2p+ η2q, (35)
qx = ν2p+ η2q, qy = ν3p+ η3q, (36)

with  ν1
ν2
ν3

 =
1

∆

 λ(κ2 − λxκ+ λκx)
κ2 − λxκ+ λκx
−(λκ2 + λyκ− κx)

 , (37)

 η1
η2
η3

 =

 κ
0
0

+
κy + κ2

∆

 λ2

λ
1

 , (38)

where ∆ = −(κλ2 + λλy − λx + κ) is the (3, 2)-minor of the
4× 4 matrix in (34). At this stage, the reader may verify by
substitution that the expressions above are consistent with the
definitions of λ and κ in (22).

Now, we again use integrability of p and q, that is (px)y =
(py)x and (qx)y = (qy)x, to get two new PDEs:

(ν1p+ η1q)y = (ν2p+ η2q)x , (39)
(ν2p+ η2q)y = (ν3p+ η3q)x . (40)

These are linear, first order PDEs, where we can again replace
the first order derivatives {px, py, qx, qy} using (35) and (36)
to get two (dependent) homogeneous linear equations in {p, q}.
Using, say, the first equation, we get the ratio of p and q as

q

p
=

ν1y + η1ν3 − ν2x − ν2η2
ν2η1 + η2x + η22 − ν1η2 − η1y − η1η3

. (41)

The statement of the theorem follows by considering a
gnomonic projection, where p = −zx and q = −zy .

Again, we note that the actual result proved is stronger and
holds for several projections besides gnomonic. To emphasize
the import of the result: using just Gaussian elimination and
repeated use of the integrability condition, just two pairs of
differential images at unknown light source positions allow
us to recover the direction of the gradient at every point of a
surface with isotropic BRDF, without requiring any additional
information.

Similar to Corollary 5, it immediately follows that:

Corollary 7. From two or more differential images of a surface,
obtained from unknown source positions, it is possible to
recover the isocontours of constant depth (or the level curves)
for the entire surface.

This result may be contrasted with symmetry-based methods
[1] that theoretically require a dense configuration of lights at
known positions to recover the same information.

(a) (b)

Fig. 7. Recovery of isocontours of constant depth. (Top row) Red
curves plot the isocontours with the same depth as the green dots.
(Bottom row) Plots of the direction of the gradient, with the length of the
vector normalized to one for display.(a) A vase with variable albedo and
Blinn-Phong BRDF. (b) A bunny with Torrance-Sparrow BRDF.

7.2.1 Experimental evaluation

The recovery of the direction of the gradient and the level
curves of constant depth is illustrated for synthetic data in
Figure 7. To display the direction of the gradient, the arrows
are plotted with length normalized to one. The isocontours of
constant depth are shown in red. All points on a red curve
have the same depth as the green point on that curve.

7.3 Surface Reconstruction from Isocontours

We note that one may not recover magnitude of the gradient
without additional information, since the uncalibrated invariant
of (21) is homogeneous in p, q and their derivatives. The
following proposition establishes that, with the results of
Corollaries 5 and 7, additional information is required for
general surfaces only on a set of measure zero.

We assume that the surface can be split into a finite number of
regions, each of which satisfies a generality condition, namely,
that the isocontours of constant z and constant ‖∇z‖ are not
everywhere parallel. Surfaces such as a hemisphere are not
general, but most surfaces do satisfy this condition.

Proposition 8. Given the isocontours of constant depth and
constant ‖∇z‖ for a general surface z(x, y), specification of
the surface normal at a single point suffices to recover depth
up to a global convex-concave ambiguity and additive offset.

Proof: Let x∗ be a point in an open set U where
the isocontours of constant z and constant ‖∇z‖ intersect
transversally. Then, within U , one may define unit vector fields
v and w that are tangent, respectively, to the isocontours of
constant z and constant ‖∇z‖ and thus, are transversal. Then,
since ∇z is orthogonal to v, it is apparent that the following
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x*

w

v

iso(  )iso(  )

iso(||  ||)iso(||  ||)

Fig. 8. Transversality of isocontours of constant z and constant ‖∇z‖
is sufficient to recover depth, given the surface normal at a single point
x∗. See Proposition 8.

relation must hold at the point x∗ ∈ U (see Figure 8)

w · ∇z
‖∇z‖

= ±
√

1− (v ·w)2. (42)

Note the sign ambiguity, which arises since the directions of
v and w can be specified at most up to a global sign. If the
value of ‖∇z‖ is specified at x∗, it is also specified at every
point on the isocontour of constant ‖∇z‖. Thus, we have a
linear ODE in z along that isocontour, which may be solved
up to an additive constant, c∗.

Since the isocontours of constant z and constant ‖∇z‖ are
transversal in U , the values of depths can now be assigned, up
to an unknown c∗, along all the isocontours of constant z that
intersect the isocontour of constant ‖∇z‖ passing through x∗

and thus, almost everywhere on U .
Note that the sign ambiguity in (42) corresponds to a

global convex-concave ambiguity and the unknown constant
c∗ corresponds to a global additive offset.

Finally, we note that for a unit normal n̂ = (n1, n2, n3)>,

we have ‖∇z‖ =

√(
1

n3

)2

− 1. Thus, specifying the surface

normal at a single point is sufficient to determine ‖∇z‖ and
seed the above depth reconstruction.

Again, we contrast with calibrated methods [1], which use
dense sources to recover isocontours of constant z and require
additional information on an entire curve to resolve the depth.
As the above proof shows, incorporating gradients has the
advantage of reducing this ambiguity, in an uncalibrated frame-
work with only two differential images, to the specification of
information at a single point.

7.3.1 Experimental Evaluation
To empirically demonstrate reconstruction from isocontours,
we simulate a monkey saddle, z = x3 − 3xy2, for which
the isocontours of constant z and ‖∇z‖ are transversal. In
Fig. 9(b), we show recovery of isocontours of constant z and
‖∇z‖. Specifying the normal at a single point on one of the
isocontours of constant ‖∇z‖ allows us to assign depths to
isocontours of constant z (Fig. 9(c)) and recover the depth map

(a) (b)

(c) (d)

Fig. 9. Depth recovery for a monkey saddle surface. (a) The ground
truth surface. (b) Recovered isocontours of constant ‖∇z‖ (red) and
constant z (cyan), from images under a Torrance-Sparrow BRDF model.
All points on the red and cyan curves have same depths as the respective
green and magenta points. (c) Specifying the surface normal at one
point (marked in blue) on the surface determines all depths along the
corresponding isocontour of constant ‖∇z‖ (green ponts), from which
depth at every other point can be determined by tracing isodepth contours
(red curves). (d) The reconstructed surface by tracing all the isocontours.

(Fig. 9(d)). The recovered depth is nearly the same as ground
truth, except in regions where the chosen isocontour (dotted
green in Fig. 9(c)) does not cross level curves of z.

8 PRACTICAL ALGORITHMS

Recall that using image derivatives, one may estimate the enti-
ties λ and κ that contain sufficient information to disambiguate
the surface, given the surface normal at a single point. However,
in practice, equation (41) involves third-order derivatives of
the surface normal, which can lead to noisy estimation.

One alternative to recover the surface normals or depth is
to incorporate additional information in the form of initial or
boundary conditions. In this section, we present algorithms for
recovering surface normals given initial information across a
curve, or recovering depths given boundary information. These
algorithms require only the estimation of λ and κ, which can
be performed directly from image derivatives, without resorting
to higher order differentiation.

This section focuses on presenting the reconstruction al-
gorithms and their results on synthetic and real data. The
experimental details of acquisition and implementation are
presented in Section 9.

8.1 Algorithm 1: Recovering Surface Normals

Proposition 9. Initial data in the form of known surface
normals on a curve suffices to recover the surface normals
from the coupled PDEs in (28) and (29).

Note that including the integrability requirement of (30) is
ignored here (as is done in traditional Lambertian photometric
stereo). Once the surface normals are estimated, one may
impose integrability while recovering the depth map.
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(a) Recovered iso(r) (b) Estimated θ (c) Ground truth θ (d) Estimated zx (e) Estimated zy (f) Estimated
and θ height map

Fig. 10. Reconstruction for a synthetic sphere using Algorithm 1 of Section 8.1. (a) Isocontours of constant r = ‖∇z‖ computed using the

estimated λ(x, y), followed by estimation of θ = tan−1

(
zx

zy

)
using seed values of the surface normal specified on the brown dots. The values of θ

are shown using a color-code that maps the interval
[
−π
2
,
π

2

]
between blue and red. (b) Recovered values of θ, with the specified color map. (c)

Ground truth θ. (d) Estimated gradient in the x direction, zx, red indicates large positive value and blue indicates large negative value. (e) Estimated
gradient in the y direction, zy , with the same color map. (f) Side view of the height recovered from integration of estimated zx and zy , which matches
the ground truth shape. Red indicates higher heights and blue indicates lower heights.

Fig. 11. Isocontours of constant ‖∇z‖ for real data corresponding to a
hand-moulded clay ball and a plastic apple.

Proof: Consider the isocontours of constant ‖∇z‖, param-
eterized by x, which are solutions to the ODE ẏ = −λ(x, y).
For a closed, smooth surface, these characteristic curves will,
in general, be non-intersecting.

Along the above curves, the pair of PDEs in (28) and (29)
reduces to a pair of ODEs:

ṗ = κq, q̇ = −κp. (43)

Let p = r sin θ and q = r cos θ. Then, the following pair of
relations, obtained by differentiating p and q with respect to
the curve parameter (in this case, x) and substituting in the
above pair of ODEs, must be true:

ṙ cos θ = (θ̇ − κ)r sin θ (44)

ṙ sin θ = −(θ̇ − κ)r cos θ. (45)

Thus, ṙ2 = r2(θ̇− κ)2. So, a solution to the pair of ODEs can
be obtained as

ṙ = 0, θ̇ = κ. (46)

Given initial data along a curve, we can solve the above pair
of ODEs. These initial conditions amount to specifying r
and θ along a curve. Surface normals can now be recovered
everywhere by specifying an initial curve transversal to the set
of isocontours of constant ‖∇z‖ that cover the surface.

8.1.1 Experimental Evaluation

We demonstrate the applicability of Algorithm 1 using synthetic
and real data. For a synthetic sphere with arbitrary isotropic
BRDF, five differential pairs of images at unknown light source
positions are used to estimate the photometric flow. Given the
estimated values of λ(x, y), Figure 10(a) shows a few contours
of constant r (that is, the curves ṙ = 0), traced with the initial
seed point marked by a brown dot. At the brown dots, we
specify the value of the surface normal, thus, the value of θ.
Then, along the isocontours, we solve the integral equation
θ =

∫
κdx, with the constant of integration being the specified

value at the brown dot. The recovered values of θ are shown
color-coded on the corresponding isocontours in Figure 10(a).

Figure 10(b) shows the values of θ recovered by tracing
isocontours over all the pixels of the image. The artifacts near
the center are due to discretization (our isocontours are traced
with sub-pixel precision, but the values of θ can be displayed
only up to a 1 pixel precision). For comparison, we show the
ground truth value of θ in Figure 10(c).

Given the values of r and θ, we can recover the gradients
zx and zy using the above equations. The recovered values are
shown in Figures 10(d) and (e). Finally, using the recovered
gradients, one may perform a surface normal integration to
estimate the depth map, shown in Figure 10(f).

Note that the algorithm requires knowledge of surface
normals along the curve given by the brown dots in Figure
10(a), which is difficult to obtain in practice. But if initial data
on a curve is indeed available, Algorithm 1 is an elegant method
to recover the surface normals directly from first order image
derivatives, without resorting to higher order differentiation.

In Figure 11, we show the recovered isocontours of constant
‖∇z‖ on real data for a hand-moulded clay ball and a plastic
apple. If the surface normals are specified at a single point on
these contours, the shape may be recovered. Note that one may
not use the occluding contour as the initial curve, as it can be
shown to be non-transversal to isocontours of constant ‖n‖.
(At the occluding contour, since n̂>v̂ = 0, it follows from (1)
that ‖n‖ → ∞ for viewing direction v̂ = (0, 0, 1)>.)
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E(t1) E(t1 + dt)

E(t2) E(t2 + dt)

(a) Sample images

(b) Floodlit image

I(t1) I(t1 + dt)

I(t2) I(t2 + dt)

(c) Ratio images

Ix Iy It

Ix Iy It

(d) Derivative images

Fig. 12. Input pipeline for the apple dataset. (a) Sample images from the differential pair. (b) Floodlit image. (c) Ratios with respect to the floodlit
image. (d) Spatial and temporal derivatives. Blue indicates low values and red indicates high values.

8.2 Algorithm 2: Recovering Depth
Proposition 10. Boundary data in the form of known depths
suffices to recover the surface depth from the PDEs in (28),
(29) and (30).

Proof: Using the integrability condition (30), the pair of
equations (28) and (29) can be written as a single constraint:

px = λ2qy − λκp+ κq. (47)

For a gnomonic projection, we have p = −zx and q = −zy.
Thus, we can rewrite the above as

zxx − λ2zyy + λκzx − κzy = 0. (48)

This is a linear, second-oder hyperbolic PDE, which is well-
posed given Dirichlet boundary conditions.

While demanding the satisfiability of the constraint in (48) is,
in fact, a weaker condition than the coupled constraints in (28)
and (29), it leads to a convenient numerical implementation.
In practice, depths may be specified at the boundary for scenes
where an object rests on a background plane. Indeed, the
extensive theory of solutions for hyperbolic PDEs can be used
to solve the PDE in (48).

8.2.1 Experimental Evaluation
In Figure 12(a), we show 2 of the 11 differential pair of images
for a plastic apple. Note that the object has variable albedo and
a non-Lambertian BRDF. These input images are divided by
the floodlit image in Figure 12(b) to obtain the ratio images in
Figure 12(c). Note that the albedo variations are eliminated in
the ratio images. Spatial and temporal derivatives are computed
on the ratio images (Figure 12(d)). From these derivarives, we
perform a reconstruction using Algorithm 2 of this section,
with boundary depths set to 0. As seen in Figure 13, the 3D
reconstruction closely resembles the expected shape.

In Figure 14, as a means of comparison to ground truth, we
show experimental results for a real teflon sphere with uniform
albedo. Note that traditional Lambertian photometric stereo can
be performed with just two light sources, or several coplanar
lights, for an object with uniform albedo. Figure 14(a) shows 2
of the 13 differential pairs used for reconstruction, while Figure
14(b) shows the corresponding spatial and temporal derivatives.

Recovered height map Texture-mapped reconstruction

Fig. 13. Reconstruction on real data for the apple dataset using
Algorithm 2 of Section 8.2, with Dirichlet boundary conditions. (Top row)
Side view. (Bottom row) Top and side view. (Left column) Height map, red
indicates higher values and blue stands for lower values. (Right column)
Texture-mapped reconstruction.

It can be easily seen from the images that the material of
the sphere is non-Lambertian. Consequently, the height map
reconstructed by traditional photometric stereo using 13 lights
is clearly sheared (Figure 14(c)). In contrast, the reconstructed
height map using the algorithm presented in this section closely
resembles a sphere (Figure 14(d)).

In Figure 15(a), we show input images for a toy dog, painted
with water color. Note the coarse and fine scale variations in
the albedo, as well as some non-Lambertian effects. More
importantly, the object surface is not differentiable, so it
presents a challenging scenario for the theory of this paper.
We again acquire a floodlit image (Figure 15(b)) and compute
ratio images to eliminate the albedo and obtain images whose
intensities depend only on the BRDF (Figure 15(c)).

The reconstruction using Algorithm 2, with boundary depths
set to 0, is shown in Figure 16(a). A depth map for the
reconstruction is shown in Figure 16(b). Figure 16(c) shows a
texture-mapping on the same reconstruction. In Figure 16(d),
we show a close-up of the reconstruction for the head.

Note the fine scale structure recovered by the algorithm,
such as the eyes and the smiling mouth. There is a minor
loss of detail near the feet of the toy dog, which might
be due to shadows and low levels of illumination (all the
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I(t1) I(t1 + dt)

I(t2) I(t2 + dt)

(a) Sample images

Ix Iy It

Ix Iy It

(b) Derivative images

(c) Traditional photometric stereo
(Assumes Lambertian BRDF)

(d) Differential photometric stereo
Algorithm 2 of Section 8.2
(Unknown, isotropic BRDF)

Fig. 14. Comparison with traditional Lambertian photometric stereo, using real data. (a) Two sample differential pairs of images of a teflon ball. (b)
Spatial and temporal image derivatives. Red stands for positive values and blue stands for negative values. (c) Height recovered using traditional
Lambertian photometric stereo. Note the shearing of the surface which is typically due to ignoring non-Lambertian effects. (d) Height recovered using
the theory of Section 8.2.

E(t1) E(t1 + dt)

E(t2) E(t2 + dt)

(a) Sample images

(b) Floodlit image

I(t1) I(t1 + dt)

I(t2) I(t2 + dt)

(c) Ratio images

Ix Iy It

Ix Iy It

(d) Derivative images

Fig. 15. Input pipeline for the toy dog dataset. (a) Sample images from the differential pair. (b) Floodlit image. (c) Ratios with respect to the floodlit
image. (d) Spatial and temporal derivatives. Red stands for positive values and blue stands for negative values.

(a) Reconstructed surface (b) Height map (c) Texture-mapped reconstruction (d) Close-up of head

Fig. 16. Reconstruction for the toy dog using Algorithm 2 of Section 8.2, with Dirichlet boundary conditions. Note that the surface is not continuously
differentiable, so does not strictly meet the requirements of our theory. Yet, the PDE solution is robust enough to recover a high quality depth map. (a)
A top-and-side view of the recovered surface. (b) Recovered height map. Brighter shading indicates higher values. (c) A texture-mapped display of
the 3D reconstruction. (d) A close-up reconstruction of the head.
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light source positions are above the level of the head). While
the theory of the paper is derived for differentiable surfaces,
this example shows robustness to minor non-differentiablity,
provided the surface is continuous. We remind the reader that
all the reconstructions in this paper are obtained without any
calibration for light source positions.

9 IMPLEMENTATION DETAILS
In this section, we provide some implementation details relevant
to the real data experiments presented in the previous sections.

9.1 PDE Solution
We take central differences to numerically solve the system of
equations arising from (48) at every pixel:

zx =
zr − zl
2∆x

, zxx =
zr − 2z + zl

(∆x)2
,

zy =
zt − zb
2∆y

, zyy =
zt − 2z + zb

(∆y)2
, (49)

where {∆x,∆y} are the step lengths in the x and y directions
and {zl, zr, zb, zt} are the pixels on the left, right, bottom and
top of z, respectively, which are one step length away. The
depths of the boundary pixels are specified to be 0. Thus, we
obtain a linear system of the form Az = b, where A is a
large, but extremely sparse matrix. Note that the reconstructed
depths at the boundaries may be non-zero, since the PDE
constraints and the boundary constraints are solved in a single
linear system, in a least squares sense.

Points where |λ| and |κ| cross a certain threshold (set to 50
in our implementation) are detected. We do not write the PDE
constraint at these points, instead, we impose a condition that
the depth must be continuous at these points.

Optionally, a regularization term (such as an isotropic prior
on the norm-squared gradient, or the Laplacian) may be
added to enhance smoothness of the solution. The regularized
objective function is

min
z
‖Az− b‖22 + µ‖∇z‖22. (50)

When regularization is used, we minimize (50) using the CVX
convex optimization software [7]. For the apple dataset, we
use a value of µ = 0.01. For the teflon ball dataset, no
regularization is required (µ = 0).

For the toy dog dataset, instead of the above regular-
izaton, we weight each PDE by a multiplicative factor

1

min{1 + |λ|, 1 + |κ|, τ}
. This downweights the contribution

of regions where λ and κ tend to infinite values. We use a
value of τ = 5, although the optimization can tolerate a large
range of values.

9.2 Computing Derivatives
An important consideration in derivative-based methods is
handling the noise-amplifying nature of differentiation. Thus,
we compute spatial image derivatives with a smoothing kernel,
such as a Savitzky-Golay filter [18].

Computing temporal derivatives is more challenging, since
one cannot take advantage of a wide support region available

Fig. 17. A simple acquisition setup that exploits the fact that our
approach does not require calibrated light source positions.

for the spatial smoothing filters. Instead, we approximate the
temporal derivative by individually smoothing the two images
of the differential pair and computing the difference.

9.3 Acquisition Setup
For the real data experiments, 16-bit images are acquired using
a Canon EOS 5D Mark II camera. For the apple (Figure 12),
teflon ball (Figure 14) and toy dog (Figure 15) datasets, we use
a gantry to acquire images at ∆t corresponding to 2 degrees.

However, the fact that we need only unconstrained motion
of the differential pair on a circle suggests a simple acquisition
setup that does not require an expensive gantry. The alternative
acquisition setup is used to acquire images for the clay ball
dataset of Figure 11(a) and is pictured in Figure 17. It consists
of two light bulbs mounted close together at the end of a rigid
shaft. The length of the shaft is set to 8 times the distance
between the two lights, which results in a ∆t of

π

8
radians

(approximately 7 degrees). To create ∆t =
π

c
radians, for a

positive interger c, one may simply use an unmarked piece
of string to set the shaft length c times the distance between
the light sources of the differential pair. Thus, our acquisition
setup does not require any calibrated measurements.

The shaft is connected to a wheel, which can be rotated
using the crank. A camera is placed facing the object, aligned
with the axis of rotation of the wheel. The crank is moved by
hand and rigidly clamped to a table while acquiring images,
resulting in different unknown positions of the differential light
pair. The differential image pairs are acquired by turning lights
1 and 2 on and off at a few different positions of the crank.

10 DISCUSSION AND FUTURE WORK
In this paper, we have presented a comprehensive theory that
relates image gradients to surface geometry for unknown,
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isotropic BRDFs. We have presented novel invariants for
surface reconstruction and precisely characterized the extent
to which they inform surface recovery in shape from shading
and uncalibrated photometric stereo. In the process, we have
uncovered fundamental insights into the nature of differential
information contained in photometric images for isotropic
BRDFs. Indeed, our theory also places fundamental limitations
on any inference problem, not just limited to photometric
surface reconstruction. Namely, using image derivatives in the
presence of unknown BRDF, without any additional priors,
is equivalent to deriving information from the ambiguous
topological classes we outline.

A key observation in our work is the linearity of the
differentiation operation, that may be used to derive novel
constraints on surface geometry, regardless of the exact form
of the BRDF. This insight is of potential relevance in many
other domains like optical flow or multiview stereo and may
provide a unified framework to analyze all such problems with
general BRDFs. Theoretical analysis of such a framework is
the subject of our ongoing and future work.
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