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Abstract. Recognition of three dimensional (3D) objects in noisy and
cluttered scenes is a challenging problem in 3D computer vision. One
approach that has been successful in past research is the regional shape
descriptor. In this paper, we introduce two new regional shape descrip-
tors: 3D shape contexts and harmonic shape contexts. We evaluate the
performance of these descriptors on the task of recognizing vehicles in
range scans of scenes using a database of 56 cars. We compare the two
novel descriptors to an existing descriptor, the spin image, showing that
the shape context based descriptors have a higher recognition rate on
noisy scenes and that 3D shape contexts outperform the others on clut-
tered scenes.

1 Introduction

Recognition of three dimensional (3D) objects in noisy and cluttered scenes is a
challenging problem in 3D computer vision. Given a 3D point cloud produced by
a range scanner observing a 3D scene (Fig. 1), the goal is to identify objects in
the scene (in this case, vehicles) by comparing them to a set of candidate objects.
This problem is challenging for several reasons. First, in range scans, much of the
target object is obscured due to self-occlusion or is occluded by other objects.
Nearby objects can also act as background clutter, which can interfere with the
recognition process. Second, many classes of objects, for example the vehicles in
our experiments, are very similar in shape and size. Third, range scanners have
limited spatial resolution; the surface is only sampled at discrete points, and fine
detail in the objects is usually lost or blurred. Finally, high-speed range scanners
(e.g., flash ladars) introduce significant noise in the range measurement, making
it nearly impossible to manually identify objects.

Object recognition in such a setting is interesting in its own right, but would
also be useful in applications such as scan registration [9][6] and robot local-
ization. The ability to recognize objects in 2 1/2-D images such as range scans
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may also prove valuable in recognizing objects in 2D images when some depth
information can be inferred from cues such as shading or motion.

(a) (b)

Fig. 1. (a) An example of a cluttered scene containing trees, a house, the ground,
and a vehicle to be recognized. (b) A point cloud generated from a scan simulation of
the scene. Notice that the range shadow of the building occludes the front half of the
vehicle.

Many approaches to 3D object recognition have been put forth, including
generalized cylinders [3], superquadrics [7], geons [23], medial axis representa-
tions [1], skeletons [4], shape distributions [19], and spherical harmonic repre-
sentations of global shape [8]. Many of these methods require that the target be
segmented from the background, which makes them difficult to apply to real-
world 3D scenes. Furthermore, many global methods have difficulty leveraging
subtle shape variations, especially with large parts of the shape missing from
the scene. At the other end of the spectrum, purely local descriptors, such as
surface curvature, are well-known for being unstable when faced with noisy data.
Regional point descriptors lie midway between the global and local approaches,
giving them the advantages of both. This is the approach that we follow in this
paper.

Methods which use regional point descriptors have proven successful in the
context of image-based recognition [17][15][2] as well as 3D recognition and sur-
face matching [22][13][5][21]. A regional point descriptor characterizes some prop-
erty of the scene in a local support region surrounding a basis point. In our case,
the descriptors characterize regional surface shape. Ideally, a descriptor should
be invariant to transformations of the target object (e.g., rotation and trans-
lation in 3D) and robust to noise and clutter. The descriptor for a basis point
located on the target object in the scene will, therefore, be similar to the de-
scriptor for the corresponding point on a model of the target object. These
model descriptors can be stored in a pre-computed database and accessed using
fast nearest-neighbor search methods such as locality-sensitive hashing [11]. The
limited support region of descriptors makes them robust to significant levels of
occlusion. Reliable recognition is made possible by combining the results from
multiple basis points distributed across the scene.



Recognizing Objects in Range Data 3

In this paper we make the following contributions: (1) we develop the 3D gen-
eralization of the 2D shape context descriptor, (2) we introduce the harmonic
shape context descriptor, (3) we systematically compare the performance of the
3D shape context, harmonic shape context, and spin images in recognizing sim-
ilar objects in scenes with noise or clutter. We also briefly examine the trade-off
of applying hashing techniques to speed search over a large set of objects.

The organization of the paper is as follows: in section 2, we introduce the
3D shape context and harmonic shape context descriptors and review the spin
image descriptor. Section 3 describes the representative descriptor method for
aggregating distances between point descriptors to give an overall matching score
between a query scene and model. Our data set is introduced in section 4, and
our experiments and results are presented in section 5. We finish in section 6
with a brief analysis of a method for speeding our matching process.

2 Descriptors

In this section, we provide the details of the new 3D shape context and harmonic
shape context descriptors and review the existing spin-image descriptor. All three
descriptors take as input a point cloud P and a basis point p, and capture the
regional shape of the scene at p using the distribution of points in a support
region surrounding p. The support region is discretized into bins, and a histogram
is formed by counting the number of points falling within each bin. For the 3D
shape contexts and spin-images, this histogram is used directly as the descriptor,
while with harmonic shape contexts, an additional transformation is applied.

When designing such a 3D descriptor, the first two decisions to be made
are (1) what is the shape of the support region and (2) how to map the bins
in 3D space to positions in the histogram vector. All three methods address
the second issue by aligning the support region’s “up” or north pole direction
with an estimate of the surface normal at the basis point, which leaves a degree
of freedom along the azimuth. Their differences arise from the shape of their
support region and how they remove this degree of freedom.

2.1 3D shape contexts

The 3D shape context is the straightforward extension of 2D shape contexts,
introduced by Belongie et al. [2], to three dimensions. The support region for a 3D
shape context is a sphere centered on the basis point p and its north pole oriented
with the surface normal estimate N for p (Fig. 2). The support region is divided
into bins by equally spaced boundaries in the azimuth and elevation dimensions
and logarithmically spaced boundaries along the radial dimension. We denote
the J + 1 radial divisions by R = {R0 . . . RJ}, the K + 1 elevation divisions by
Θ = {Θ0 . . . ΘK}, and the L+1 azimuth divisions by Φ = {Φ0 . . . ΦL}. Each bin
corresponds to one element in the J × K × L feature vector. The first radius
division R0 is the minimum radius rmin, and RJ is the maximum radius rmax.
The radius boundaries are calculated as
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Rj = exp

{

ln(rmin) +
j

J
ln

(

rmax

rmin

)}

. (1)

Fig. 2. Visualization of the
histogram bins of the 3D
shape context.

Sampling logarithmically makes the descriptor
more robust to distortions in shape with distance
from the basis point. Bins closer to the center are
smaller in all three spherical dimensions, so we use
a minimum radius (rmin > 0) to avoid being overly
sensitive to small differences in shape very close
to the center. The Θ and Φ divisions are evenly
spaced along the 180

�

and 360
�

elevation and az-
imuth ranges.

Bin(j, k, l) accumulates a weighted count w(pi)
for each point pi whose spherical coordinates rela-
tive to p fall within the radius interval [Rj , Rj+1),
azimuth interval [Φk, Φk+1) and elevation interval
[Θl, Θl+1). The contribution to the bin count for
point pi is given by

w(pi) =
1

ρi
3
√

V (j, k, l)
(2)

where V (j, k, l) is the volume of the bin and ρi is the local point density
around the bin. Normalizing by the bin volume compensates for the large varia-
tion in bin sizes with radius and elevation. We found empirically that using the
cube root of the volume retains significant discriminative power while leaving the
descriptor robust to noise which causes points to cross over bin boundaries. The
local point density ρi is estimated as the count of points in a sphere of radius
δ around pi. This normalization accounts for variations in sampling density due
to the angle of the surface or distance to the scanner.

We have a degree of freedom in the azimuth direction that we must remove in
order to compare shape contexts calculated in different coordinate systems. To
account for this, we choose some direction to be Φ0 in an initial shape context,
and then rotate the shape context about its north pole into L positions, such
that each Φl division is located at the original 0

�

position in one of the rotations.
For descriptor data sets derived from our reference scans, L rotations for each
basis point are included, whereas in the query data sets, we include only one
position per basis point.

2.2 Harmonic shape contexts

To compute harmonic shape contexts, we begin with the histogram described
above for 3D shape contexts, but we use the bin values as samples to calculate
a spherical harmonic transformation for the shells and discard the original his-
togram. The descriptor is a vector of the amplitudes of the transformation, which
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are rotationally invariant in the azimuth direction, thus removing the degree of
freedom.

Any real function f(θ, φ) can be expressed as a sum of complex spherical
harmonic basis functions Y m

l .

f(θ, φ) =

∞
∑

l=0

m=l
∑

m=−l

Am
l Y

m
l (θ, φ) (3)

A key property of this harmonic transformation is that a rotation in the az-
imuthal direction results in a phase shift in the frequency domain, and hence
amplitudes of the harmonic coefficients ‖Am

l ‖ are invariant to rotations in the
azimuth direction. We translate a 3D shape context into a harmonic shape con-
text by defining a function fj(θ, φ) based on the bins of the 3D shape context
in a single spherical shell Rj ≤ R < Rj+1 as:

fj(θ, φ) = SC(j, k, l), θk < θ ≤ θk+1, φl < φ ≤ φl+1. (4)

As in [14], we choose a bandwidth b and store only b lowest-frequency com-
ponents of the harmonic representation in our descriptor, which is given by
HSC(l,m, k) = ‖Am

l,k‖, l,m = 0 . . . b, r = 0 . . . K. For any real function, ‖Am
l ‖ =

‖A−m
l ‖, so we drop the coefficients Am

l for m < 0. The dimensionality of the re-
sulting harmonic shape context isK ·b(b+1)/2. Note that the number of azimuth
and elevation divisions do not affect the dimensionality of the descriptor.

Harmonic shape contexts are related to the rotation-invariant shape descrip-
tors SH(f) described in [14]. One difference between those and the harmonic
shape contexts is that one SH(f) descriptor is used to describe the global shape
of a single object. Also, the shape descriptor SH(f) is a vector of length b
whose components are the energies of the function f in the b lowest frequen-
cies: SHl(f) = ‖

∑l
m=−l A

m
l Y

m
l ‖. In contrast, harmonic shape contexts retain

the amplitudes of the individual frequency components, and, as a result, are
more descriptive.

2.3 Spin Images

We compared the performance of both of these shape context-based descriptors
to spin images [13]. Spin-images are well-known 3D shape descriptors that have
proven useful for object recognition [13], classification [20], and modeling [10].
Although spin-images were originally defined for surfaces, the adaptation to
point clouds is straightforward. The support region of a spin image at a basis
point p is a cylinder of radius rmax and height h centered on p with its axis
aligned with the surface normal at p. The support region is divided linearly into
J segments radially and K segments vertically, forming a set of J × K rings.
The spin-image for a basis point p is computed by counting the points that fall
within each ring, forming a 2D histogram. As with the other descriptors, the
contribution of each point qi is weighted by the inverse of that point’s density
estimate (ρi); however, the bins are not weighted by volume. Summing within
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each ring eliminates the degree of freedom along the azimuth, making spin-
images rotationally invariant. We treat a spin-image as a J × K dimensional
feature vector.

3 Using point descriptors for recognition

To compare two descriptors of the same type to one another, we use some mea-
sure of distance between the feature vectors: `2 distance for 3D shape contexts
and spin images, and the inverse of the normalized correlation for harmonic
shape contexts. Given a query scene Sq and a set of reference descriptors cal-
culated from scans of known models, we would like to choose the known model
which is most similar to an object in Sq. After we calculate descriptors from Sq

and distances between the query descriptors and reference descriptors, we face
the problem of how to aggregate these distances to make a choice as to which
model is the best match to Sq.

A straightforward way of doing this would be to have every descriptor from
Sq vote for the model that gave the closest descriptor, and choose the model with
the most votes as the best match. The problem is that in placing a hard vote,
we discard the relative distances between descriptors which provide information
about the quality of the matches. To remedy this, we use the representative
shape context method introduced in Mori et al. [18], which we refer to as the
representative descriptor method, since we also apply it to spin images.

3.1 Representative descriptor method

We precompute M descriptors at points p1, ...pM for each reference scan Si, and
compute at query time K descriptors at points q1, ...qK from the query scene
Sq, where K ¿M . We call these K points representative descriptors (RDs). For
each of the query points qk and each reference scan Si, we find the descriptor
pm computed from Si that has the smallest `2 distance to qk. We then sum the
distances found for each qk, and call this the representative descriptor cost of
matching Sq to Si:

cost(Sq,Si) =
∑

k∈{1,...,K}

min
m∈{1,...,M}

dist(qk, pm) (5)

The best match is the reference model S that minimizes this cost.
Scoring matches solely on the representative descriptor costs can be thought

of as a lower bound on an ideal cost measure that takes geometric constraints
between points into account. We show empirically that recognition performance
using just these costs is remarkably good even without a more sophisticated
analysis of the matches.

One could select the center points for the representative descriptors using
some criteria, for example by picking out points near which the 3D structure
is interesting. For purposes of this paper, we sidestep that question altogether
and choose our basis points randomly. To be sure that we are representing the
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performance of the algorithm, we performed each representative descriptor ex-
periment 100 times with different random subsets of basis points. For each run
we get a recognition rate that is the percentage of the 56 query scenes that we
correctly identified using the above method. The mean recognition rate is the
recognition rate averaged across runs.

4 Data set
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VW Golf I
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Fig. 3. The 56 car models used in our experiments shown to scale.

We tested our descriptors on a set of 56 3D models of passenger vehicles
taken from the De Espona 3D model library [12] and rescaled to their actual
sizes (Fig. 3).3 The point clouds used in our experiments were generated using

3 The Princeton Shape Benchmark, a data set with 1,814 3D models, was re-
cently released. We didn’t learn of the data set in time to use it in this pa-
per, but we will be using it in future experiments. It can be found online at
http://shape.cs.princeton.edu/benchmark/.
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a laser sensor simulator that emulates a non-commercial airborne range scanner
system. We have shown in separate experiments that these descriptors work well
for real data, but for these experiments, our goal was to compare the performance
of the descriptors in controlled circumstances.

We generated two types of point clouds: a set of model or “reference” scans,
and several sets of scene or “query” scans. For each vehicle, we generated four
reference scans with the sensor positioned at 90

�

azimuth intervals (φ = 45
�

,
135

�

, 225
�

, and 315
�

), a 45
�

declination angle, and a range of 500 m from the
target. The resulting point clouds contained an average of 1,990 target points
spaced approximately 6 cm apart. The query scans were generated in a similar
manner, except that the declination was 30

�

and the azimuth was at least 15
�

different from the nearest reference scan. Depending on the experiment, either
clutter and occlusion or noise was added. Clutter and occlusion were generated
by placing the model in a test scene consisting of a building, overhanging trees,
and a ground plane (Fig. 1(a)). The point clouds for these scenes contained an
average of 60,650 points. Noisy scans were modeled by adding Gaussian noise
(N (0, σ)) along the line of sight of each point.

(a) (b) (c)

Fig. 4. The top row shows scans from the 1962 Ferrari 250 model, and the bottom scans
are from the Dodge Viper. The scans in column (a) are the query scans at 30

�

elevation
and 15

�

azimuth with σ = 5 cm noise, and those in (b) are from the same angle but
with σ = 10 cm noise. With 10 cm noise, it is difficult to differentiate the vehicles by
looking at the 2D images of the point clouds. Column (c) shows the reference scans
closest in viewing direction to the query scans (45

�

azimuth and 45
�

elevation). In the 5
cm and 10 cm noise experiments, we first chose 300 candidate basis points and sampled
RDs from those.

Basis points for the descriptors in the reference point clouds were selected
using a method that ensures approximately uniform sampling over the model’s
visible surface. Each point cloud was divided into 0.2-meter voxels and one point
was selected at random from each occupied voxel, giving an average of 373 de-
scriptors per point cloud (1,494 descriptors per model). Basis points in the query
point clouds were chosen using the same method, except that the set was fur-
ther reduced by selecting a random subset of N basis points (N=300 for the
clutter-free queries and N=2000 for the clutter queries) from which representa-
tive descriptors were chosen. For a given experiment, the same subset of basis
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points were used in generating the three types of descriptors. After noise and
clutter were added, normals for the basis points were computed using a method
which preserves discontinuities in the shape and that accounts for noise along the
viewing direction [16]. The algorithm uses points within a cube-shaped window
around the basis point for the estimation, where the size of the window can be
chosen based on the expected noise level.

5 Experiments

The parameters for the descriptors (Table 1) were chosen based on extensive
experimentation on other sets of 3D models not used in these experiments (Ta-
ble 1). However, some parameters (specificallyK and rmin) were fine-tuned using
descriptors in 20 randomly selected models from our 56 vehicle database. The
basis points used for training were independent from those used in testing. The
relative scale of the support regions was chosen to make the volume encompassed
comparable across descriptors.

Table 1. Parameters used in the ex-
periments for shape contexts (SC), har-
monic shape contexts (HSC), and spin
images (SI). All distances are in meters

SC HSC SI

max radius (rmax) 2.5 2.5 2.5
min radius (rmin) 0.1 0.1 -
height (h) - - 2.5
radial divisions (J) 15 15 15
elev./ht. divisions (K) 11 11 15
azimuth divisions (L) 12 12 -
bandwidth (b) - 16 -
dimensions 1980 2040 225
density radius (δ) 0.2 0.2 0.2
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Fig. 5. Results for the 5cm noise ex-
periment. All three methods performed
roughly equally. From 300 basis points
sampled evenly from the surface, we chose
varying numbers of RDs, and recorded
the mean recognition rate. The error bars
show one standard deviation.

5.1 Scenes with 5cm noise

In this set of experiments, our query data was a set of 56 scans, each containing
one of the car models. We added Gaussian noise to the query scans along the
scan viewing direction with a standard deviation of 5 cm (Fig. 4). The window
for computing normals was a cube 55 cm on a side. Fig. 5 shows the mean
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recognition rate versus number of RDs. All of the descriptors perform roughly
equally, achieving close to 100% average recognition with 40 RDs.

5.2 Scenes with 10 cm noise

We performed two experiments with the standard deviation increased to 10 cm
(see Fig. 4). In the first experiment, our window size for computing normals was
the same as in the 5 cm experiments. The results in Fig. 5.2 show a significant
decrease in performance by all three descriptors, especially spin images. To test
how much the normals contributed to the decrease in recognition, we performed
a second experiment with a normal estimation window size of 105 cm, giving us
normals more robust to noise. The spin images showed the most improvement,
indicating their performance is more sensitive to the quality of the normals.
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(a) (b)

Fig. 6. Results for 10 cm noise experiments. In experiment (a) we used a window for
the normals that was a cube 55 cm on a side, whereas in (b) the size was increased to
a cube 105 cm on a side. The error bars show one standard deviation from the mean.
From this experiment, we see that shape contexts degrade less as we add noise and in
particular are less sensitive to the quality of the normals than spin images. All three
methods would benefit from tuning their parameters to the higher noise case, but this
would entail a recalculation of the reference set. In general, a method that is more
robust to changes in query conditions is preferable.

5.3 Cluttered scenes

To test the ability of the descriptors to handle a query scene containing sub-
stantial clutter, we created scenes by placing each of the vehicle models in the
clutter scene shown in Fig. 1(a). We generated scans of each scene from a 30

�

declination and two different azimuth angles (φ = 150 and φ = 300), which we
will call views #1 and #2 (Fig. 7). We assume that the approximate location of
the target model is given in the form of a box-shaped volume of interest (VOI).
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(a) (b)

Fig. 7. The cluttered scene with the Karmann Ghia. Picture (a) is the scan from view
2, and (b) is a close-up of the VOI in view 1. For the fully-rendered scene and the full
scan from view 1, refer to Fig. 1. The scanner in view 1 was located on the other side of
the building from the car, causing the hood of the car to be mostly occluded. In view
2, the scanner was on the other side of the trees, so the branches occlude large parts
of the vehicle. There were about 100 basis points in the VOI in each query scene, and
from those we randomly chose 80 representative descriptors for each run.

The VOI could be determined automatically by a generic object saliency algo-
rithm, but for the controlled experiments in this paper, we manually specified
the VOI to be a 2 m × 4 m × 6 m volume that contains the vehicle as well
as some clutter, including the ground plane (Fig. 7(b)). Basis points for the de-
scriptors were chosen from within this VOI, but for a given basis point, all the
scene points within the descriptor’s support region were used, including those
outside of the VOI.

We ran separate experiments for views 1 and 2, using 80 RDs for each run.
When calculating the representative descriptor cost for a given scene-model pair,
we included in the sum in equation (5) only the 40 smallest distances between
RDs and the reference descriptors for a given model. This acts as a form of outlier
rejection, filtering out many of the basis points not located on the vehicle. We
chose 40 because approximately half of the basis points in each VOI fell on a
vehicle. The results are shown in Fig. 8.

The shape context performance is impressive given that this is a result of
doing näıve point-to-point matching without taking geometric constraints into
account. Points on the ground plane were routinely confused for some of the car
models which geometric constraints could rule out. A benefit of the 3D shape
context over the other two descriptors is that a point-to-point match gives a
candidate orientation of the model in the scene which can be used to verify
other point matches.
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Fig. 8. Cluttered scene results. In both, we included in the cost the 40 smallest dis-
tances out of those calculated for 80 RDs. The graphs show recognition rate versus
rank depth with error bars one standard deviation from the mean. We calculated the
recognition rate based on the k best choices, where k is our rank depth (as opposed to
considering only the best choice for each query scene). We computed the mean recog-
nition rate as described before, but counted a match to a query scene as “correct”
if the correct model was within the top k matches. Graph (a) shows the results for
view #1 and (b) for view #2. Using the 3D shape context we identifying on average
78% of the 56 models correctly using the top 5 choices for each scene, but only 49%
of the models if we look at only the top choice for each. Spin images did not perform
as well; considering the top 5 matches, spin images achieved a mean recognition rate
of 56% and only 34% if only the top choice is considered. Harmonic shape contexts do
particularly bad, achieving recognition slightly above chance. They chose the largest
vehicles as matches to almost all the queries.

6 Speeding search with locality-sensitive hashing

In this section, we briefly explore the cost of using 3D shape contexts and discuss
a way to bring the amount of computation required for a 3D shape context query
closer to what is used for spin images while maintaining accuracy.

In the spin image and harmonic shape context experiments, we are comparing
each of our representative descriptors to 83,640 reference descriptors. We must
compare to the 12 rotations when using 3D shape contexts, giving a total of
1,003,680. Our system implementation takes 7.4 seconds on a 2.2 GHz processor
to perform the comparison of one 3D shape context to the reference set.

Fast search techniques such as locality-sensitive hashing (LSH) [11] can re-
duce the search space by orders of magnitude, making it more practical to
search over the 3D shape context rotations, though there is a tradeoff between
speed and accuracy of the nearest-neighbor result. The method divides the high-
dimensional feature space where the descriptors lie into hypercubes, divided by a
set of k randomly-chosen axis-parallel hyperplanes. These define a hash function
where points that lie in the same hypercube hash to the same value. The greater
the number of planes, the more likely that two neighbors will have different hash
values. The probability that two nearby points are separated is reduced by inde-
pendently choosing l different sets of hyperplanes, thus defining l different hash
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functions. Given a query vector, the result is the set of hashed vectors which
share one of their l hash values with the query vector.
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Fig. 9. Results for LSH experi-
ments with 3D shape contexts on
the 10cm noise query dataset us-
ing the 105 cm window size. Shown
are results using 160 RDs where
we included the 80 smallest dis-
tances in the RD sum. The exact
nearest neighbor results for spin
images and 3D shape contexts are
shown for comparison.

In Figure 9, we show LSH results on the
10cm noise dataset with the 105 cm window
size using 160 RDs (exact nearest neighbor re-
sults are shown in Figure 5.2(b)). We chose
this data set because it was the most chal-
lenging of the noise tests where spin images
performed well (using an easier test such as
the 5 cm noise experiment provides a greater
reduction in the number of comparisons). In
calculating the RD costs, the distance from a
query point to a given model for which there
were no hash matches was set to a value larger
than any of the other distances. In this way,
we penalized for a failure to match any hashed
descriptors. To remove outliers caused by un-
lucky hash divisions, we included in the sum
in equation (5) only the 80 smallest distances
between RDs and the returned reference de-
scriptors. Note that performing LSH using 3D
shape contexts with k = 200 hash divisions
and l = 10 hash functions requires fewer de-
scriptor comparisons than an exact nearest
neighbor search using spin images, and pro-
vides slightly better accuracy.
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