
Learning Globally-Consistent Local Distance Functions for Shape-Based Image
Retrieval and Classification

Andrea Frome
EECS, UC Berkeley

andrea.frome@gmail.com

Fei Sha
EECS, UC Berkeley

feisha@cs.berkeley.edu

Yoram Singer
Google, Inc.

singer@google.com

Jitendra Malik
EECS, UC Berkeley

malik@cs.berkeley.edu

Abstract

We address the problem of visual category recognition
by learning an image-to-image distance function that at-
tempts to satisfy the following property: the distance be-
tween images from the same category should be less than
the distance between images from different categories. We
use patch-based feature vectors common in object recogni-
tion work as a basis for our image-to-image distance func-
tions. Our large-margin formulation for learning the dis-
tance functions is similar to formulations used in the ma-
chine learning literature on distance metric learning, how-
ever we differ in that we learn local distance functions—
a different parameterized function for every image of our
training set—whereas typically a single global distance
function is learned. This was a novel approach first in-
troduced in Frome, Singer, & Malik, NIPS 2006. In that
work we learned the local distance functions independently,
and the outputs of these functions could not be compared at
test time without the use of additional heuristics or training.
Here we introduce a different approach that has the advan-
tage that it learns distance functions that are globally con-
sistent in that they can be directly compared for purposes of
retrieval and classification. The output of the learning al-
gorithm are weights assigned to the image features, which
is intuitively appealing in the computer vision setting: some
features are more salient than others, and which are more
salient depends on the category, or image, being consid-
ered. We train and test using the Caltech 101 object recog-
nition benchmark. Using fifteen training images per cate-
gory, we achieved a mean recognition rate of 63.2% and
using twenty images per category, a rate of 66.6%.

image j

D ji D ki

imageimage ki

Figure 1. Three images from the Caltech101 data set, two from the
dog category, one from the Faces category. We want to learn
distance functions between pairs of images such that the distance
from j to i (Dji) is smaller than from k to i (Dki). Triplets like
this one form the basis of our learning algorithm.

1. Introduction

Consider the triplet of images, drawn from the Cal-
tech101 dataset [4], shown in Figure 1. We want to clas-
sify a query image i, and we have stored exemplar images
j and k. Let Dji be the distance from image j to i, and
Dki be the distance from image k to i where Dji < Dki.
Then a nearest neighbor classifier which assigns the cate-
gory of the query image i based on which of Dji, Dki is
smaller, would trivially do the right thing. Note that for
this to work, the distance function need not be symmet-
ric, in general Dji �= Dij . To approach this problem, we
parameterize the image-to-image distance functions using
a weighted linear combination of distances between patch-
based shape feature descriptors, such as SIFT [14] or geo-
metric blur [2]. These features characterize image patches
by fixed length vectors, which can be compared using L1 or
L2 metrics. One possible approach to computing an image-
to-image distance is to attempt to solve the correspondence
problem by taking into account both distances between fea-



Figure 2. Visualizations of the weights learned by our algorithm
for one type of shape feature (geometric blur with 42-pixel radius)
for three images from our training set. Each circle is centered at
the center point of the feature’s patch and the color of the circle
indicates the relative value of the weight. The colors are on Mat-
lab’s jet scale, where dark red is the highest weight (most salient
feature) and dark blue is the lowest non-zero weight. Weights that
were assigned a zero weight are not shown. Note that the circles
are much smaller than the extent of the features and that the col-
ors are scaled separately for each image. For (a), the algorithm
learned zero weights for all but 83 of the 400 small geometric blur
features computed for the image, and learned that the most impor-
tant feature is the patch around the eye of the panda. For (b) it
learned that the most useful features are on the breast and tail of
the rooster, and assigned zero weights to all but 79 of the roughly
400 small geometric blur features. For (c) it learned that the best
features aren’t on the leopard at all, but are along the right edge
and in the upper-right corner of the image. The Leopards im-
ages were drawn from the Corel image set and they have a thin
black border around the image that algorithms can exploit, mak-
ing it a surprisingly easy category.

ture vectors and the geometric arrangement of their patches
(e.g. [1]). However, this is expensive, and recent approaches
that use sets of features and absolute positions of patches
provide good approximations that work well in practice. We
work in a setting where we approximate correspondence by
only the distance between feature vectors. More precisely,
given the mth of M patch features from image j, find the
best-matching patch in image i, and let the distance between
them be dji,m. The image-to-image distance Dji is defined
to be a weighted sum of these distances

Dji =
M∑

m=1

wj,mdji,m (1)

where the different patch features, indexed by m, in image
j are assigned possibly different weights wj,m. The intu-
ition is that the weights will be high for “relevant” features
and low or zero for “irrelevant” features for characterizing
the visual category of j. Figure 2 is a visualization of the
weights that our algorithm learned for three training images.

The core learning problem is to find the weights wj,m

such that the distance relationships among triplets of im-
ages holds. We formalize the problem within a large-margin
learning framework. At the general algorithmic level, we
follow the formulation in [18], and in the context of image
recognition, that in our earlier work, [6]. Both this work and
[6] differ from [18] in that we both learn a parameterization

for every exemplar (image) and neither our input distances
nor our final distances are metrics. This is a departure from
standard approaches in machine learning and computer vi-
sion, and the work of [6] was novel in this respect. How-
ever, in that work, local distance functions were learned in-
dependently for each training image, which means that the
outputs from different distance functions are not compara-
ble to one another at test time. To use the distance func-
tions for retrieval and classification, [6] performed a sec-
ond round of training using logistic regression to put their
distance functions on the same scale. In this paper, we in-
troduce a more principled approach to learning local dis-
tance functions, where the evaluation criteria for retrieval
and classification are consistent with the learning formula-
tion. We jointly learn the weights across our training set,
yielding local distance functions that are globally consis-
tent in that that are directly comparable at test time. When
we are given a test image we can simply rank our training
images using the outputs of the distance functions. Using
such an ordering, we can make a category choice using a
nearest-neighbor classifier.

We apply our technique to image classification and re-
trieval on the Caltech101 dataset. We achieve a 63.2% mean
recognition rate using 15 training images per category and
66.6% using 20 images per category. These represent a sig-
nificant improvement over the best previously published re-
sults.

The rest of the paper is organized as follows: Section 2
discusses related work in computer vision and machine
learning; Section 3 formalizes the problem setting while
Section 4 introduces the form of the optimization problem
and the dual used to solve it; Section 5 gives experimen-
tal details, including our choice of patch features, how we
choose our triplets for training, and how we choose the pa-
rameter to our learning algorithm; and Section 6 discusses
our results on the Caltech101 data set.

2. Related Work

There has been much work in recent years using semi-
local patch-based features such as SIFT [14] and geometric
blur [2] for object (image) classification. When the Cal-
tech101 data set [4] was introduced in 2004, the initial re-
sult was approximately only 16% mean recognition across
categories. Since then, there has been great improvements
in recognition performance on the 2004 benchmark, with
most algorithms making use of some variant of geometric
blur or SIFT [1, 25, 11, 13, 9, 8, 16, 19]. Of this work, [9],
[13], and [8] focused specifically on defining good image-
to-image kernel functions over sets of patch-based features
for use with support vector machines (SVMs). In the first
two of the three, the distance function is designed in ad-
vance and does not make use of the training data. In the
third, the training data is used to structure a hierarchy over



the feature space, but the class labels are not used. In [25],
the geometric blur descriptor was used with DAG SVMs
and a nearest-neighbor pruning of the training set at test
time to yield strong results. That work also linearly com-
bined different types of feature information, though their
combination was parameterized by a single variable tuned
by cross-validation.

The objective function and constraints of our large-
margin formulation are the same as those in [18], which is
part of a larger recent body of work in metric learning, also
including [24], [23], and [7]. In this line of work, the inputs
x are points in some metric feature space, and the goal is
to learn the matrix A which parameterizes a Mahalanobis
distance of the form (x−x′)A(x−x′). To our knowledge,
this type of approach has not previously been applied to dis-
tances between sets of feature vectors as are used in the vi-
sion setting. Our approach deviates from these approaches
in that they learn a single parameterized distance function
for all exemplars, whereas this work and [6] go to the other
extreme and learn a distance function for every exemplar.

3. Problem Setting

In the shape-based correspondence, retrieval, and recog-
nition work of the past few years, techniques based on semi-
local, or patch-based, features such as SIFT and geometric
blur have shown some of the best performance. A typical al-
gorithm chooses a set of patches in an image, and for each
patch computes a fixed-length feature vector. This gives
a set of vectors per image, where the size of the set can
vary from image to image, which is different from a typ-
ical machine learning setting where there is a single fixed-
length vector for each exemplar, often embedded in a metric
space. Thus, any method which makes use of these types
of features in a discriminative setting is dependent upon
a good set-to-set (image-to-image) distance (or similarity)
function, and this has been an active area of research in the
last year [9, 8, 13]. More formally, if we let Fi be the set of
feature vectors for image i, then these are asymmetric dis-
tance functions that take two setsFi andFj and give a value
in R+. In an SVM setting, these functions give a positive
semi-definite mapping, and the kernel matrix is composed
of the image-to-image distances. In almost all machine vi-
sion work that makes use of a discriminative classifier and
sets of features, learning is done only after the distances are
computed between pairs of images.

In this work, we want to learn the distance function in a
data-driven matter. Let fj,m be the mth feature vector from
image j. We assume a basic asymmetric distance from a
single feature vector fj,m from one image to the set of fea-
tures Fi from another. (In our case, we use the smallest
L2 distance between fj,m and any member of the set Fi.)
Denote the output of this function as dji,m. Assume in ad-
dition that each of the features in j is associated with an

j

i

k j

i

k

Figure 3. A triplet representing the constraint Djk > Dji from [6]
(left) and a triplet representing our constraint Dkj > Dij (right).

importance weight wj,m. Denote the image-to-image dis-
tance between j and i as Dji, as defined in Eq. 1.

We borrow the term local distance functions from [6],
where this setting was introduced. The functions are local
in that they are defined with respect to a single image (image
j in this case), which is a departure from the body of met-
ric learning work and all work we know of in the machine
vision community which makes use of a single “global” dis-
tance function that does not change depending upon the in-
puts. Our goal is to learn the weights wj,m for all images in
the training set.

Typically, we can say that image i is more similar to im-
age j than to image k, for example by assuming that images
in the same class are likely to be more similar than images
in different classes. We exploit this structure by casting a
learning problem over triplets of images. Specifically, let
i, j, k denote the indices of a three images such that image i
is a reference image which is more similar to image j than
it is to image k. Ideally, we would like Dki > Dji where
D is defined in Eq. 1. Denote by dji the concatenation of
the features dji,m into a vector. Analogously, we denote
by wj the concatenation to a vector of the weights wj,m.
Equipped with this notation we can cast the requirement
Dkj > Djk as the inequality wk ·dki > wj ·dji. This con-
straint is fundamentally different than the constraints used
in [6]. Consider the graphs in Figure 3, representing the
way the triplet constraints are constructed. Note that the
constraints from [6] each only involve one distance func-
tion; this decomposes their problem into a separate learning
problem for every image, whereas each of our triplets in-
volves two distance functions, and since in our setting all
images serve as positive, negative, and reference images in
other triplets, all the constraints are tied together. While de-
coupling the learning problem may reduce training time by
making it easily parallelizable, it results in distance func-
tions which are independent and not directly comparable to
one another. Indeed, the approach in [6] requires additional
heuristics for retrieval and classification. Because our con-
straints are tied together, we find a set of local weights that
are globally consistent, and we are able to directly compare
our distances at test time.

4. Large-Margin for Distance Learning

In an idealistic noise-free setting, we might be able to
find weight vectors such the constraint wk · dkj > wi · dij

would hold for all triplets i, j, k. Furthermore, by scaling



each weight vector we can ensure that in an idealistic setting
the following inequality holds,

wk · dkj ≥ wi · dij + 1 . (2)

When dealing with real image data we clearly cannot si-
multaneously satisfy the constraints for all triplets i, j, k.
We therefore need to relax Eq. 2. We propose a relaxation
which adapts and generalizes the notion of large-margin
classification [21] to our setting. To make the connection
to classification work clearer and to simplify our derivation
we need to further expand our notation.

We denote by W the vector which is the concatenation of
the image-specific vectors wi for every image of our train-
ing set. Thus, each image-specific vector corresponds to a
subrange of W. We also need to introduce a similar expan-
sion for the distances. Let Xijk denote a vector of the same
length as W such that all of its entries are 0 except the sub-
ranges corresponding to images k and j, which are set to
dki and −dji, respectively. It is straightforward to verify
that the term wk ·dki−wj ·dji can now be simply written
as W ·Xijk and Eq. 2 distills to W ·Xijk ≥ 1.

The relaxation penalizes linearly for deviating from the
constraint W · Xijk ≥ 1. We are interested in obtaining
a vector W whose cumulative deviation over all triplets is
small. Formally, let [z]+ denote the function max{0, z}.
Then, the empirical loss of W over a collection of triplets
is defined as the sum of hinge losses∑

i,j,k

[1−W ·Xijk]+ .

Focusing solely on the empirical loss in order to find W
may result in over-fitting. Here again we follow the work
on vector machines and impose an L2 regularization penalty
on W. Thus, the above objective function becomes,

1
2
‖W‖2 + C

∑
i,j,k

[1−W ·Xijk]+ . (3)

The scalar C is a trade-off parameter between the squared-
norm regularization term and the empirical loss. The larger
C is, the greater the emphasis on obtaining a small empir-
ical error. We discuss the method we used for setting C in
the next section.

We now briefly describe the numerical algorithm for
solving the convex problem given in Eq. 3. We do so by
casting the hinge-loss in the objective in Eq. 3 as a linear
objective function with multiple linear constraints. We as-
sociate a slack variable ξijk as in the standard soft-margin
SVM form, and get the following constrained optimization
problem,

min
W,ξ

1
2 ‖W‖2 + C

∑
ijk ξijk

s.t. ∀i, j, k : ξijk ≥ 0
∀i, j, k : W ·Xijk ≥ 1− ξijk

∀m : Wm ≥ 0

(4)

where C controls the trade-off between the loss and reg-
ularization terms and is an input to the optimization (Sec-
tion 5.4 discusses the choice of C parameter). The setting
is the same as that used in [6] and [18], even though the
assumptions and the data model underlying it are different
from both. The positivity constraint on the elements of W
is due to the fact that our goal is to define a distance func-
tion which, by definition, is a positive definite operator. If
we assume that the values dji,m form a PSD matrix, then a
sufficient and necessary condition is that the elements of W
are non-negative.

We solve this optimization using a dual method. The
dual problem of the primal in Eq. 4 is

max
α,µ

− 1
2

∥∥∥∑
ijk αijkXijk + µ

∥∥∥2

+
∑

ijk αijk

s.t. ∀i, j, k : 0 ≤ αijk ≤ C
∀m : µm ≥ 0

(5)

where αijk is the dual variable corresponding to the con-
straint on triplet i, j, k, and µ is a vector of dual vari-
ables that maintain the positivity constraint on the elements
of W. The conversion to the dual yields the equivalence
W =

∑
ijk αijkXijk + µ. We solve the dual using a cus-

tom dual solver that iterates over the dual variables, and per-
forms the following two updates:

W←

∑

ijk

αijkXijk




+

αijk ←
[
1− 〈W ·Xijk〉
‖Xijk‖2 + αijk,

]
[0,C]

where W in the first update is clipped to zero if negative,
and αijk in the second update is clipped to the closest value
in [0, C]. We stop iterating when all KKT conditions are
met, within some precision. This technique is a general-
ized row-action method, closely related to online learning
of SVM [3], and is described in more detail in [5].

There are some clear alternatives to the machine learning
choices we have made in this work and in [6]. In particular,
using an L1 regularization that promotes sparsity is likely
to increase the number of features with zero weight, which
would reduce the number of feature comparisons required at
test time. However, using L1 regularization may make the
algorithm more sensitive to noise. There are also alterna-
tives to the dual solver we described. In particular, we could
use a primal method that directly optimizes the regularized
objective function or one that optimizes the hinge loss sub-
ject to L2 or L1 norm constraints on W. The latter method
works by augmenting gradient steps with projections onto
an Lp-ball of a predefined radius. We performed some pre-
liminary experiments with primal methods but have not yet
achieved results comparable to those from the dual solver.



geometrically blur

 and sample

one set of samples 

per channel

a channel per filter

Figure 4. Computation of geometric blur features. A set of sparse
signals is derived from the image, using filters, oriented energy, or
a more sophisticated boundary detector such as Pb[15]. If we have
a set of eight signals, then for a given patch in the original image,
we have eight signal patches. Each signal patch is blurred geomet-
rically, meaning that the standard deviation of the Gaussian filter
is increased with increasing distance from the center of the patch.
The blurred patch is sampled at a set of points, and the final feature
vector is the concatenation of the samples for all eight signals. In
our experiments, we use a geometric blur feature computed from
four orientations of Pb.

5. Details

5.1. Choosing features

As with any approach built upon patch-based features,
the choice of feature type is crucial. If the features do not
capture the visually salient elements of images for the pur-
poses of categorization, the algorithm as a whole will per-
form poorly. Some of the best results on Caltech101[25, 6]
have been achieved using geometric blur features[2]. At a
high level, these are similar to SIFT in that they capture
the relationship of oriented edges in a patch of the image,
but they differ in the details. A diagram of the extraction
process is shown in Figure 4. We use the same set of geo-
metric blur features used in [25] and [6], which are centered
at edges in the images and computed from patches of fixed
scale. One advantage of our method and [6] over methods
such as [25] that use a fixed distance function is we are able
to naturally combine different features by simple concate-
nating their individual distances together into a single dji

vector. As in [6], we use geometric blur features computed
at two different scales (radii of 70 and 42 pixels). In most of
our experiments we also use the simple color features used
in [6] —HSV histograms of the 42-pixel patches used for
the smaller geometric blur features— to demonstrate that
we are able to naturally combine features of different types.
For both shape features and the color feature, we use the L2

distance to compute our feature-to-set distances.
We are able to achieve very good performance without

using information about the location of patches in the im-
ages, whereas many of the best results make use of the ab-
solute position of the patches [13, 25, 16]. We could eas-

ily incorporate this information in the style of [16] by only
comparing a feature in image j to the set of features in im-
age i that are in roughly the same position (as opposed to
comparing to all features in image i), and this is a possible
avenue for future work.

5.2. Choosing triplets

We train on a subset of the exhaustive set of possible
triplets since training with all triplets is neither practical
nor advantageous. To build our set of triplets from a la-
beled dataset such as Caltech101, we could use every possi-
ble combination of reference, positive, and negative images
from the training set. For an experiment using 15 images
per category, we would have 15 reference images per cate-
gory (1515) times the number of positive examples for each
reference image (×14), times all negative examples for each
of those positive pairs (×1500) for a total of about 31.8 mil-
lion triplets. Training with the exhaustive set of triplets has
a few drawbacks. First, if the training data is too large to
fit into memory, then we need to perform disk seeks within
our iterations. Second, the amount of time for each iteration
over the data increases linearly with the number of triplets,
and the time required to run to completion or reach a good
answer may increase super-linearly. Many of the triplet
constraints the exhaustive approach creates are very easy
to satisfy, so while they contribute to the size of the training
data, they do not improve the final weights. Third, many
of these triplets involve “bad” positive pairs; even with the
best possible weights on their features, the constraints in-
volving these pairs are still badly violated. This is a form
of label noise and we believe it should be present in a chal-
lenging object recognition data set. A large-margin clas-
sifier, while relatively less sensitive to outliers than some
other algorithms (e.g. logistic regression), still attempts to
fit the noise.

We address both these issues by pruning the possible set
of triplets using the feature-to-set distances. For an image
j, for each feature, we order the other images in the training
set by their feature-to-set distance and make use of the top
N closest for each feature of j. Consider a positive example
in this short list: we know that this positive pair is similar
according at least one feature, so it is likely we could find a
weighting that makes the distance small. A negative exam-
ple in this short list is also a good candidate because it will
probably give a constraint close to the margin, which the
algorithm should focus on. Thus, given that image i was in
the short list for j, we want to use the distance vector dji in
some of our triplets. We group these pairs by the reference
images (i in this case) and then form triplets from all pairs
involving that reference image. We chose a depth of N = 5
without testing other parameter choices, and found it to give
a good reduction in the number of triplets. For 15 images
per category, we reduce the set of triplets by roughly half,



to “only” 15.7 million.

5.3. Early Stopping

Our dual solver terminates when it can make a full pass
over all constraints without any updates. A given con-
straint may not change because either (1) it has satisfied the
KKT conditions within some precision [17], or (2) the up-
date to the dual variable falls below a threshold for a “use-
ful”update (we use the threshold from [17]). The solver of-
ten stops before full convergence, but for large data set sizes
it still takes a long time to run. Using 5 images per category,
the optimization ran to completion in about 11 minutes. Us-
ing 15 images per category, it took 10 hours, and with 20
images, approximately 16 hours.

An advantage of the dual solver is that, like online learn-
ing methods such as [20], it finds a near-optimal solution
very quickly. We record the value of the dual objective after
every pass over the data, and we use the rate of change of
the dual as an indicator of progress; when the rate of change
of the dual becomes small (e.g. 0.001% of the value of the
dual), most of the progress has already been made, and we
can use the weights learned up to that point. In practice
this works well; with 15 images per category, the recogni-
tion performance was the same using weights taken after
running to completion (10 hours) and weights sampled af-
ter one hour of training. The results reported in this paper
for 20 images per category are from our only sample of the
weights, taken after about 2 1

2 hours of training.

5.4. Setting the Trade-off Parameter

The trade-off parameter C used in the convex optimiza-
tion problem defined in Eq. 3 plays a crucial role. Using a
large value for C might put too much emphasis on the em-
pirical loss which often results in over-fitting the training
set. An excessively small value as the choice of C typi-
cally yields an over-regularized setting which leads again to
poor performance in practice. A popular and practical ap-
proach for choosing C is to run the full learning procedure
with multiple suggestions for C on a held-out portion of the
training set, also called a validation set. This approach en-
tertains some formal properties [12] and often yields very
good results in practice. However, the approach is quite
time consuming as it requires running the training algorithm
several times for different partitions of the data.

Due to the size of our problem we chose an alternative
approach which is based on recent advances in research
on online learning algorithms and fits nicely with our dual
formulation of the problem. For a choice of C, we make
one pass over our set of triplets, and for each triplet i, j, k,
we (1) evaluate the loss for that example using the formula
[1 −W · Xijk]+ then (2) make an update to its αijk dual
variable (effectively updating the weight vector W). In this
way, every example in the set serves once as a “held-out”

example before contributing to the model. By taking the
average loss across the training examples after one sweep
through the data, we get a number that we can compare to
runs with different values of C. The value of C that gives
the smallest average loss is the parameter that we use to run
the full learning algorithm. The predictions of this online
algorithm, known as Passive-Aggressive [3], are guaranteed
to be competitive with the predictions of the optimal solu-
tion of Eq. 3. Though we did not make use of it, the vector
W obtained after a single online pass through the training
set can serve as a very good initialization for the batch opti-
mization process. We sampled values of C very coarsely, at
half-orders of magnitude. For the data set using 20 images
per category, each C test took only a couple minutes.

6. Results

We tested our algorithm using the Caltech101 data set.
Introduced in 2004[4], it had more categories than any other
object recognition dataset at the time by an order of mag-
nitude, and the state of the art in image classification al-
gorithms has improved greatly since its introduction. The
dataset has several drawbacks, however. For one, there is
little variation in pose or scale within many classes. Worse,
there are artifacts that make some classes very easy to iden-
tify, such as rotated pictures (e.g.minaret) or thin borders
(e.g.Leopards, see Figure 2). While it is true our ap-
proach (rightfully) exploits the artifacts in the dataset, it is
a general approach that can be applied using any patch fea-
tures and is not tuned to the Caltech101 data set.

We performed experiments using 5, 10, 15, and 20 im-
ages per category, using the remaining images in the dataset
for testing, as in [9]. For each test image, we order the train-
ing images according to their distance to the test image us-
ing their learned distance functions. To make a class choice,
we use a modified 3-NN classifier, where if no two images
agree on the class within the top 10 matches, then we take
the class of the top-ranked image. The choice of three and
ten were arbitrary and we did not tune them. The number of
test images varies between classes, with some of the easiest
classes having the greatest number, so we compute our av-
erage recognition as in [9] by first computing the percentage
correct for each class, and then averaging those numbers to
get mean recognition. This is equivalent to computing the
average of the diagonal of the confusion matrix. We use all
101 categories in training and testing, but do not make use
of the background class. Most results to date have been re-
ported using all 101 categories except [10] which omits the
Faces easy category, a confuser for the Faces category.

The graph in Figure 5 shows our results with several of
the results published in the last few years. At five and ten
images per category, we perform below the best results from
[25], and cross somewhere between ten and fifteen images
per category. At fifteen images per category, we achieve



0 5 10 15 20 25 30 35

10

15

20

25

30

35

40

45

50

55

60

65

70

Number of training examples per class

M
ea

n 
re

co
gn

iti
on

 r
at

e 
pe

r 
cl

as
s

This paper
Griffin,Holub,Perona, Tech Report, 2007
Frome,Singer,Malik, NIPS 2006
Zhang, et al., CVPR 2006
Lazebnik, et al., CVPR 2006
Berg, PhD Thesis 2005
Mutch & Lowe, CVPR 2006
Grauman & Darrell, Tech Report, Mar 2006
Berg, et al., CVPR 2005
Wang, et al., CVPR 2006
Holub, et al., ICCV 2005
Serre, et al., CVPR 2005
Fei−Fei, et al., 2004

Figure 5. Number of images per category versus mean recognition
rate. Our results are the solid black line that cross above the oth-
ers between 10 and 15 images per category. Also shows results
from [10], [25], [13], [16], [9], [1], [22], [11], [19], and [4]. Note
that the results just below ours at 20 images per category are com-
puted differently; they do not include the Faces easy category
in training or testing, thus eliminating a prominent confuser.

Figure 6. Confusion matrix for 15 images per category, shown us-
ing the jet color scale from Matlab. Dark red indicates 100% while
dark blue indicates 0%, with a gradient from warm to cool colors
in between (see scale, right). A perfect matrix would be dark blue
matrix except for a dark red diagonal.

a recognition rate of 63.2%, about 3% better than the best
previously published results, and at 20, we achieve 66.6%,
about 5% better than the next best result that trains and tests
on all 101 categories. It makes sense that our performance
would increase dramatically with the number of categories:
we use a nearest-neighbor classifier, plus at the core of our
method is an assumption that there are pairs of similar im-
ages in the training set. This is more likely to be true as the
number of training images grows.

All other approaches other than [6] use only shape fea-

tures, whereas our work and [6] make use of rudimentary
color features. Most of our performance is gained from the
shape features; at 15 images per category, the color features
add only 2% to the mean recognition. At the same time, the
fact that these simple color features improve performance at
all demonstrates that our method is able to naturally com-
bine features of very different types. In Figure 6, we show
our confusion matrix for 15 images per category.

Acknowledgments

Thank you to Alex Berg and Hao Zhang who provided
feature data and valuable feedback; to Simon Lacoste-Julien
for helpful machine learning discussions; to Mike Howard
for network support; and to Michael Maire, Adam Kirk, and
Bryan Feldman for help with editing. This research was
supported by a gift from Google and ONR Grant N00014-
06-1-0734.

References

[1] A. Berg, T. Berg, and J. Malik. Shape matching and object
recognition using low distortion correspondence. In CVPR,
2005.

[2] A. Berg and J. Malik. Geometric blur for template matching.
In CVPR, pages 607–614, 2001.

[3] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. Online passive aggressive algorithms. Journal of
Machine Learning Research, 7, Mar 2006.

[4] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: an incremental
bayesian approach testing on 101 object categories. In Work-
shop on Generative-Model Based Vision, CVPR, 2004.

[5] A. Frome. Learning Distance Functions for Exemplar-Based
Object Recognition. PhD thesis, UC Berkeley, 2007.

[6] A. Frome, Y. Singer, and J. Malik. Image retrieval and clas-
sification using local distance functions. In NIPS, 2006.

[7] A. Globerson and S. Roweis. Metric learning by collapsing
classes. In NIPS, 2005.

[8] K. Grauman and T. Darrell. Approximate correspondences
in high dimensions. In NIPS, 2006.

[9] K. Grauman and T. Darrell. Pyramic match kernels: Dis-
criminative classficiation with sets of image features (ver-
sion 2). Technical Report MIT CSAIL TR 2006-020, MIT,
March 2006.

[10] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cate-
gory dataset. Technical Report UCB/CSD-04-1366, Califor-
nia Institute of Technology, 2007.

[11] A. D. Holub, M. Welling, and P. Perona. Combining gen-
erative models and fisher kernels for object recognition. In
ICCV, 2005.

[12] M. Kearns and D. Ron. Algorithmic stability and sanity-
check bounds for leave-one-out cross-validation. Neural
Computation, 11:1427–1453, 1999.

[13] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.



[14] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, pages 1000–1015, Sep 1999.

[15] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using local brightness, color and tex-
ture cues. TPAMI, 26(5):530–549, May 2004.

[16] J. Mutch and D. G. Lowe. Multiclass object recognition with
sparse, localized features. In CVPR, 2006.

[17] J. Platt. Advances in Kernel Methods - Support Vector Learn-
ing, chapter Fast Training of Support Vector Machines us-
ing Sequential Minimal Optimization, pages 185–208. MIT
Press, 1998.

[18] M. Schutlz and T. Joachims. Learning a distance metric from
relative comparisons. In NIPS, 2003.

[19] T. Serre, L. Wolf, and T. Poggio. Object recognition with
features inspired by visual cortex. In CVPR, 2005.

[20] S. Shalev-Shwartz, Y. Singer, and A. Ng. Online and batch
learning of pseudo-metrics. 2004.

[21] V. N. Vapnik. Statistical Learning Theory. Wiley-
Interscience, 1998.

[22] G. Wang, Y. Zhang, and L. Fei-Fei. Using dependent re-
gions for object categorization in a generative framework. In
CVPR, 2006.

[23] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric
learning for large margin nearest neighbor classification. In
NIPS, 2005.

[24] E. Xing, A. Ng, and M. Jordan. Distance metric learning with
application to clustering with side-information. In NIPS,
2002.

[25] H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Dis-
criminative Nearset Neighbor Classification for Visual Cate-
gory Recognition. In CVPR, 2006.


