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Abstract 

We propose a sequential information maximization model as a 
general strategy for programming eye movements. The model 
reconstructs high-resolution visual information from a sequence of 
fixations, taking into account the fall-off in resolution from the 
fovea to the periphery. From this framework we get a simple rule 
for predicting fixation sequences: after each fixation, fixate next at 
the location that minimizes uncertainty (maximizes information) 
about the stimulus. By comparing our model performance to human 
eye movement data and to predictions from a saliency and random 
model, we demonstrate that our model is best at predicting fixation 
locations. Modeling additional biological constraints will improve 
the prediction of fixation sequences. Our results suggest that 
information maximization is a useful principle for programming 
eye movements. 

1  Introduction 

Since the earliest recordings [1, 2], vision researchers have sought to understand the 
non-random yet idiosyncratic behavior of volitional eye movements. To do so, we 
must not only unravel the bottom-up visual processing involved in selecting a 
fixation location, but we must also disentangle the effects of top-down cognitive 
factors such as task and prior knowledge. Our ability to predict volitional eye 
movements provides a clear measure of our understanding of biological vision. 

One approach to predicting fixation locations is to propose that the eyes move to 
points that are “salient”. Salient regions can be found by looking for center-
surround contrast in visual channels such as color, contrast and orientation, among 
others [3, 4]. Saliency has been shown to correlate with human fixation locations 
when observers “look around” an image [5, 6] but it is not clear if saliency alone 
can explain why some locations are chosen over others and in what order. Task as 
well as scene or object knowledge will play a role in constraining the fixation 



 

locations chosen [7]. Observations such as this led to the scanpath theory, which 
proposed that eye movement sequences are tightly linked to both the encoding and 
retrieval of specific object memories [8]. 

1 .1  Our Approach  

We propose that during natural, active vision, we center our fixation on the most 
informative points in an image in order to reduce our overall uncertainty about what 
we are looking at. This approach is intuitive and may be biologically plausible, as 
outlined by Lee & Yu [9]. The most informative point will depend on both the 
observer’s current knowledge of the stimulus and the task. The quality of the 
information gathered with each fixation will depend greatly on human visual 
resolution limits. This is the reason we must move our eyes in the first place, yet it 
is often ignored. A sequence of eye movements may then be understood within a 
framework of sequential information maximization. 

2  Human eye movements  

We investigated how observers examine a novel shape when they must rely heavily 
on bottom-up stimulus information. Because eye movements will be affected by the 
task of the observer, we constructed a learn-discriminate paradigm. Observers are 
asked to carefully study a shape and then discriminate it from a highly similar one. 

2 .1  St imul i  and  Des ign  

We use novel silhouettes to reduce the influence of object familiarity on the pattern 
of eye movements and to facilitate our computations of information in the model. 
Each silhouette subtends 12.5º to ensure that its entire shape cannot be characterized 
with a single fixation. 

During the learning phase, subjects first fixated a marker and then pressed a button 
to cue the appearance of the shape which appeared 10º to the left or right of fixation. 
Subjects maintained fixation for 300ms, allowing for a peripheral preview of the 
object. When the fixation marker disappeared, subjects were allowed to study the 
object for 1.2 seconds while their eye movements were recorded. During the 
discrimination phase, subjects were asked to select the shape they had just studied 
from a highly similar shape pair (Figure 1). Performance was near 75% correct, 
indicating that the task was challenging yet feasible. Subjects saw 140 shapes and 
given auditory feedback. 
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Figure 1. Temporal layout of a trial during the learning phase (left). Discrimination of 
learned shape from a highly similar one (right). 



 

2 .2  Apparatus  

Right eye position was measured with an SRI Dual Purkinje Image eye tracker while 
subjects viewed the stimulus binocularly. Head position was fixed with a bitebar. A 
25 dot grid that covered the extent of the presentation field was used for calibration. 
The points were measured one at a time with each dot being displayed for 500ms. 
The stimuli were presented using the Psychtoolbox software [10]. 

3  Model  

We wish to create a model that builds a representation of a shape silhouette given 
imperfect visual information, and which updates its representation as new visual 
information is acquired. The model will be defined statistically so as to explicitly 
encode uncertainty about the current knowledge of the shape silhouette. We will use 
this model to generate a simple rule for predicting fixation sequences: after each 
fixation, fixate next at the location that will decrease the model’s uncertainty as 
much as possible. Similar approaches have been described in an ideal observer 
model for reading [11], an information maximization algorithm for tracking 
contours in cluttered images [12] and predicting fixation locations during object 
learning [13]. 

3 .1  Represent ing  in format ion  

The information in silhouettes clearly resides at its contour, which we represent 
with a collection of points and associated tangent orientations. These points and 
their associated orientations are called edgelets, denoted e1, e2, ... eN, where N is the 
total number of edgelets along the boundary. Each edgelet ei is defined as a triple 
ei=(xi, yi, zi) where (xi, yi) is the 2D location of the edgelet and zi is the orientation 
of the tangent to the boundary contour at that point. zi can assume any of Q possible 
values 1, 2, …, Q, representing a discretization of Q possible orientations ranging 
from 0 toπ , and we have chosen Q=8 in our experiments. The goal of the model is 
to infer the most likely orientation values given the visual information provided by 
one or more fixations. 

3 .2  Updat ing  knowledge  

The visual information is based on indirect measurements of the true edgelet values 
e1, e2, ... eN. Although our model assumes complete knowledge of the number N and 
locations (xi, yi) of the edgelets, it does not have direct access to the orientations zi.1 
Orientation information is instead derived from measurements that summarize the 
local frequency of occurrence of edgelet orientations, averaged locally over a coarse 
scale (corresponding to the spatial scale at which resolution is limited by the human 
visual system). These coarse measurements provide indirect information about 
individual edgelet orientations, which may not uniquely determine the orientations. 
We will use a simple statistical model to estimate the distribution of individual 
orientation values conditioned on this information. 

Our measurements are defined to model the resolution limitations of the human 
visual system, with highest resolution at the fovea and lower resolution in the 

                                                           
1 Although the visual system does not have precise knowledge of location coordinates, the 
model is greatly simplified by assuming this knowledge. It is reasonable to expect that 
location uncertainty will be highly correlated with orientation uncertainty, so that the 
inclusion of location should not greatly affect the model's decisions of where to fixate next. 



 

periphery. Distance to the fovea is measured as eccentricity E, the visual angle 
between any point and the fovea. If ),( yxx =

r is the location of a point in an image 
and ),( yx fff =

r
 is the fixation (i.e. foveal) location in the image then the 

eccentricity is fxE
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Our model represents pooled information as a histogram of edge orientations within 
the effective radius. For each edgelet ei we define the histogram of all edgelet 
orientations ej within radius ri = r(E) of ei , where E is the eccentricity of ),( iii yxx =
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which is the proportion of edgelet orientations that assume value z in the 
(eccentricity-dependent) neighborhood of edgelet ei.2 

 

 
Figure 2. Relation between eccentricity E and radius r(E) of the neighborhood (disk) 
which defines the local orientation histogram (hiz). Left and right panels show two 
fixations for the same object. 

 

Up to this point we have restricted ourselves to the case of a single fixation. To 
designate a sequence of multiple fixations we will index them by k=1, 2, …, K (for 
K total fixations). The kth fixation location is denoted by ),()( k

y
k

x
k fff =

r . The 
quantities ri , Ni and hiz depend on fixation location and so to make this dependence 
explicit we will augment them with superscripts as r , ,)(k

i
)(k

iN  and h . )(k
iz

                                                           
2 yx,δ  is the Kronecker delta function, defined to equal 1 if yx =  and 0 if yx ≠ . 



 

Now we describe the statistical model of edgelet orientations given information 
obtained from multiple fixations. Ideally we would like to model the exact 
distribution of orientations conditioned on the histogram data:  
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components z at every edgelet e
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where gi(zi) is the marginal distribution of orientation zi. Determining these 
marginal distributions is still difficult even with the factorization assumption, so we 
will make an additional approximation: ∏
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normalization factor. This approximation corresponds to treating as a likelihood 
function over z, with independent likelihoods for each fixation k. While the 
approximation has some undesirable properties (such as making the marginal 
distribution g

)(k
izh

i(zi) more peaked if the same fixation is made repeatedly), it provides a 
simple mechanism for combining histogram evidence from multiple, distinct 
fixations. 

3 .3  Se lec t ing  the  next  f ixa t ion  

Given the past K fixations, the next fixation )1( +Kf
r

is chosen to minimize the model 

entropy of the edgelet orientations. In other words, )1( +Kf
r

is chosen to minimize 
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entropy by evaluating it across a set of candidate locations )1( +Kf
r

which forms a 
regularly sampled grid across the image.3 We note that this selection rule makes 
decisions that depend, in general, on the full history of previous K fixations. 

4  Results  

Figure 3 shows an example of one observer’s eye movements superimposed over the 
shape (top row), the prediction from a saliency model (middle row) [3] and the 
prediction from the information maximization model (bottom row). The information 
maximization model updates its prediction after each fixation. 

An ideal sequence of fixations can be generated by both models. The saliency model 
selects fixations in order of decreasing salience. The information maximization 
model selects the maximally informative point after incorporating information from 
the previous fixations. To provide an additional benchmark, we also implemented a  

                                                           
3 This rule evaluates the entropy resulting from every possible next fixation before making a 
decision. Although this rule is suitable for our modeling purposes, it would be inefficient to 
implement in a biological or machine vision system. A practical decision rule would use 
current knowledge to estimate the expected (rather than actual) entropy. 



 

 
Figure 3. Example eye movement pattern, superimposed over the stimulus (top row), 
saliency map (middle row) and information maximization map (bottom row). 

model that selects fixations at random. One way to quantify the performance is to 
map a subject’s fixations onto the closest model predicted fixation locations, 
ignoring the sequence in which they were made. In this analysis, both the saliency 
and information maximization models are significantly better than random at 
predicting candidate locations (p < 0.05; t-test) for three observers (Figure 4, left).  
The information maximization model performs slightly but significantly better than 
the saliency model for two observers (lm, kr). If we match fixation locations while 
retaining the sequence, errors become quite large, indicating that the models cannot 
account for the observed behavior (Figure 4, right). 
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Figure 4. Prediction error of three models: random (R), saliency (S) and information 
maximization (I) for three observers (pv, lm, kr). The left panel shows the error in 
predicting fixation locations, ignoring sequence. The right panel shows the error when 
sequence is retained before mapping. Error bars are 95% confidence intervals. 

The information maximization model incorporates resolution limitations, but there 
are further biological constraints that must be considered if we are to build a model 
that can fully explain human eye movement patterns. First, saccade amplitudes are 
typically around 2-4º and rarely exceed 15º [15]. When we move our eyes, the 
image of the visual world is smeared across the retina and our perception of it is 
actively suppressed [16]. Shorter saccade lengths may be a mechanism to reduce 
this cost. This biological constraint would cause a fixation to fall short of the 
prediction if it is distant from the current fixation (Figure 5). 



 

 
Figure 5. Cost of moving the eyes. Successive fixations may fall short of the maximally 
salient or informative point if it is very distant from the current fixation. 

Second, the biological system may increase its sampling efficiency by planning a 
series of saccades concurrently [17, 18]. Several fixations may therefore be made 
before sampled information begins to influence target selection. The information 
maximization model currently updates after each fixation. This would create a 
discrepancy in the prediction of the eye movement sequence (Figure 6). 

 
Figure 6. Three fixations are made to a location that is initially highly informative 
according to the information maximization model. By the fourth fixation, the subject 
finally moves to the next most informative point. 

5  Discussion 

Our model and the saliency model are using the same image information to 
determine fixation locations, thus it is not surprising that they are roughly similar in 
their performance of predicting human fixation locations. The main difference is 
how we decide to “shift attention” or program the sequence of eye movements to 
these locations. The saliency model uses a winner-take-all and inhibition-of-return 
mechanism to shift among the salient regions. We take a completely different 
approach by saying that observers adopt a strategy of sequential information 
maximization. In effect, the history of where we have been matters because our 
model is continually collecting information from the stimulus. We have an implicit 
“inhibition-of-return” because there is little to be gained by revisiting a point. 
Second, we attempt to take biological resolution limits into account when 
determining the quality of information gained with each fixation. By including 
additional biological constraints such as the cost of making large saccades and the 



 

natural time course of information update, we may be able to improve our prediction 
of eye movement sequences. 

We have shown that the programming of eye movements can be understood within a 
framework of sequential information maximization. This framework is portable to 
any image or task. A remaining challenge is to understand how different tasks 
constrain the representation of information and to what degree observers are able to 
utilize the information. 
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