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Abstract. Object viewpoint classification aims at predicting an approx-
imate 3D pose of objects in a scene and is receiving increasing atten-
tion. State-of-the-art approaches to viewpoint classification use genera-
tive models to capture relations between object parts. In this work we
propose to use a mixture of holistic templates (e.g. HOG) and discrimi-
native learning for joint viewpoint classification and category detection.
Inspired by the work of Felzenszwalb et al 2009, we discriminatively
train multiple components simultaneously for each object category. A
large number of components are learned in the mixture and they are as-
sociated with canonical viewpoints of the object through different levels
of supervision, being fully supervised, semi-supervised, or unsupervised.
We show that discriminative learning is capable of producing mixture
components that directly provide robust viewpoint classification, signif-
icantly outperforming the state of the art: we improve the viewpoint
accuracy on the Savarese et al 3D Object database from 57% to 74%,
and that on the VOC 2006 car database from 73% to 86%. In addi-
tion, the mixture-of-templates approach to object viewpoint/pose has a
natural extension to the continuous case by discriminatively learning a
linear appearance model locally at each discrete view. We evaluate con-
tinuous viewpoint estimation on a dataset of everyday objects collected
using IMUs for groundtruth annotation: our mixture model shows great
promise comparing to a number of baselines including discrete nearest
neighbor and linear regression.

1 Introduction

One fundamental property of visual sensing is that it is a projection process
from a 3D world to a 2D image plane; much of the 3D information is lost in the
projection. How to model and re-capture the 3D information from 2D views has
been at the center of the computer vision research. One classical example is the
aspect graphs of Koenderink and van Doorn [1], where a 3D object is modeled
as a collection of inter-connected 2D views.

A complete understanding of objects in a visual scene comprises not only
labeling the identities of objects but also knowing their poses in 3D. Most of the
recent vision research has been devoted to the recognition problem, where huge



progresses have been made: the SIFT matching framework [2] and the HOG
models [3, 4] are good representatives of how much object recognition capabili-
ties have progressed over the years. The 3D object pose problem have received
much less but still considerable attention. The series of work from Savarese and
Fei-Fei [5–7] are good examples of how people approach the 3D pose problem
in modern contexts, where large benchmarks are established and evaluated for
discrete viewpoint classification [5, 8].

There have been, however, divergent trends between object recognition and
pose estimation. Latest progresses in object recognition employ discriminative
templates directly trained from image gradients [4]; latest 3D pose models group
features into parts and learn generative models of their relationships [6, 7].

We believe the two problems should be one and identical, that a good frame-
work of object detection should be able to handle both category and viewpoint
classification. In particular, discriminative learning, which has seen great suc-
cesses in category classification, should readily apply to viewpoint classification.

In this work we present strong empirical proof that it is indeed the case: a
discriminatively learned mixture of templates, extending the latent HOG frame-
work of Felzenszwalb et al [4], is capable of representing a large number of
viewpoints (as components) and handling both category and viewpoint classi-
fication. A mixture-of-HOG model produces superior results for all the three
cases of supervised (with groundtruth view labels), semi-supervised (with a sub-
set of view labels) and unsupervised (no view labels) viewpoint learning (see
Figure 1). Furthermore, the mixture-of-templates approach has a natural exten-
sion to the continuous case: we propose a continuous viewpoint model which
linearly approximates local appearance variations at each discrete view. This
model is discriminatively trained, just as in the discrete case, and outputs a
continuous 3D viewpoint/pose.

We evaluate our approach on a number of 3D object databases, including
the 3DObject Database of Savarese [5], the VOC2006 car database [8], and
a dataset of our own for benchmarking continuous viewpoint estimation. We
show that we significantly outperform the state-of-the-art results on all these
challenging benchmarks: we improve the 8-way viewpoint classification accuracy
on the 3DObject database from 57% to 74%, and that on the VOC2006 cars from
73% to 86%. For the continuous case, we show that our discriminative mixture
model outperforms a number of baselines, including one using the closest discrete
viewpoint and one using linear regression on top of the viewpoints.

2 Related Work

Understanding 3D objects and scenes from 2D views is the fundamental task of
computer vision. In the early days vision researchers paid close attention to the
2D-to-3D correspondence, but many approaches were line-based and had many
difficulties dealing with real-life images. The aspect graph of [1] presents a theory
for modeling 3D objects with a set of inter-connected 2D views. This theory has
a sound psychological foundation (e.g. [16]) and has been very influential and
underlies most approaches to 3D object recognition.
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Fig. 1. We propose to use a discriminative mixture of templates for object viewpoint
classification. We discriminatively learn a large mixture of templates using HOG [3, 4]
and show that the templates correspond well to the canonical views of an object, which
are directly used for viewpoint classification and significantly outperform the state of
the art. We show that the mixture model works well when trained with complete view-
point labels (supervised), a subset of labels (semi-supervised), and no viewpoint labels
(unsupervised). We then extend the mixture model for continuous pose prediction,
again using a discriminative mixture of templates.

Estimating the 3D pose of objects is a classical problem, and many solu-
tions have been developed using either local features (e.g. [17]) or shape outlines
(e.g. [18]), usually assuming perfect knowledge of the object. With the matu-
ration of local feature detection (as in SIFT and its variants), latest progresses
on pose estimation have mostly been local-feature based (e.g. [19, 20]) and per-
formed fairly well on instances of objects, preferably with texture.

There has been an increasing interest lately in 3D object pose classification,
which aims at predicting a discrete set of viewpoints. A variety of approaches
have been explored (e.g. silhouette matching [10] or implicit shape models [9] or
virtual-training [13]). At the same time, many works on category-level classifi-
cation also address the issue of multiple views (e.g. [21, 14]).

The series of work from Savarese and Fei-Fei [5–7] directly address the prob-
lem of 3D viewpoint classification at the category and are the most relevant
for us. They have developed a number of frameworks for 3D viewpoints, most
adopting the strategy of grouping local features into parts and learning about
their relations. Similar approaches have been adopted in a number of other works
(e.g. [12, 22]) that show promising results. The 3DObject dataset of Savarese et
al [5] is a standard benchmark for viewpoint classification and has a system-
atic collection of object views. A number of categories from the PASCAL chal-
lenge [8], such as cars, are also annotated with viewpoints. We quantitatively
evaluate our approach on these datasets.

The most recent progress in object recognition sees the use of discriminatively
trained templates [3, 4, 23]. These techniques have been shown to perform very
well on real-life cluttered images. In particular, the work of [4] presents a way
to train mixture-of-components for object detection, and they illustrated the
procedure with two components on cars and pedestrians. The context-based
discriminative clustering work of [24] is similar in spirit. Our work is based on
the mixture-of-HOG approach but focuses on viewpoints instead of categories.
We explicitly handle viewpoints and train HOG models with a large number
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of viewpoints/components. We also develop approaches for semi-supervised and
unsupervised learning of viewpoints, and extend the discrete viewpoint model
to the continuous case.

3 Discrete Viewpoint Models

In this scheme, given an example object, the models for each category return a
confidence score of the object being in that category as well as a discrete view-
point label associated with a canonical pose of that category. In many cases, such
poses have semantic meanings, for instance, the frontal/side views of a car. We
design each of these models as a mixture of HOG-based templates corresponding
to multiple canonical poses of the category. We formulate the score function of
example x as

Sw(x) = max
v∈V

〈wv, ψv(x)〉 = max
v∈V

wT
v ψv(x) (1)

wherew = {w1, w2, . . . , wV } are the learned mixture of templates, V = {1, 2, . . . , V },
V is the number of canonical viewpoints in the model, and ψv(x) is the feature
representation of x under viewpoint label v. Since the dimensions of templates
can be different, ψv(x) is designed to match the dimension of wv.

Accordingly, the predicted viewpoint label of x is

ṽd(x) = argmax
v∈V

wT
v ψv(x) (2)

where the subscript d indicates a discrete label.
Features: we are in favor of HOG-based features because they encode spa-
tial layout of object shape and handle well with intra-class and intra-viewpoint
variations. We use the implementation of [4] for feature construction and nor-
malization.
Detection: we adopt the standard framework of multi-scale window scanning
for localizing objects in the image. The windows whose scores are higher than a
learned threshold are picked as candidate detections, and non-max suppression
is applied as postprocessing to remove redundant window detections.

3.1 Training

We extend the training algorithm of [4] to cope with viewpoint classification. For
each category, we learn a mixture of V -component templatesw = {w1, w2, . . . , wV }
from a set of positive and negative training examples denoted by {x1, x2, . . . , xP }
and {z1, z2, . . . , zN}. Our learning framework attempts to “match” every posi-
tive example with at least one of these templates, and every negative example
with none of the templates. Mathematically, the large margin optimization of
this scheme is formulated as

(w∗, λ∗) = argmin
w,λ

V
∑

v=1

{

1

2
‖wv‖

2 + CNeg

N
∑

n=1

l
(

−wT
v ψv(zn)

)

+

CPos

P
∑

p=1

λpv · l
(

wT
v ψv(xp)

)

}

(3)
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subject to λpv ∈ {0, 1} and
∑V

v=1
λpv = 1, ∀ p = 1, . . . , P . Here, λ are binary

component labels. l(s) = max(0, 1−s) is the hinge-loss function. CPos and CNeg

control the relative weights of the regularization term.

Our training procedure is directly based on [4]: each template wv is initial-
ized through a set of positive examples initially labeled as viewpoint v. In each
iteration, all templates are updated simultaneously through data-mining hard
negative examples and updating viewpoint labels λ of positive examples.

In [4], λ are considered as latent variables and thus the cost function does not
enforce λ to match their true values. Here, we solve a more general problem which
includes the scenarios when λ are partially or completely unknown. Furthermore,
model initialization in [4] is solely based on aspect ratio; it is not designed for
general viewpoint modeling and thus far from optimal for our problem. We will
show that a carefully designed initialization is necessary to learn reasonable
templates for canonical viewpoints.

Denote {vd(x1), vd(x2), . . . , vd(xP )} as the groundtruth viewpoint labels of
the positive examples. In the following, we consider three scenarios, where these
labels are completely known, partially known, and unknown. We name them
supervised, semi-supervised, and unsupervised cases, respectively.

3.2 Supervised Case

In the supervised case, each λpv = 1 [v = vd(xp)] is fixed. The model is initialized
by partitioning the positive examples into groups based on the viewpoint labels
and learn one viewpoint template from each group. In the model update step,
the optimization is reduced to a linear SVM formulation.

We note that although we do not change component labels during the training
process, this is different from training each component independently, as the
training process uses a single regularization constraint and enforces the margin
on all the clusters simultaneously. This has proved to be critical in learning
mixture models that are balanced and accurate for viewpoint prediction.

3.3 Semi-supervised Case

In the semi-supervised case, we first build a multi-viewpoint classifier using the
positive examples that have known viewpoint labels. In practice, we use the
libsvm multi-class classification toolbox[25] on the HOG features. Once the rest
of the positive examples are classified, we initialize component templates based
on either known or estimated labels. In the model update step, we fix the labels
for those who have known viewpoint labels, and allow the others to change.

3.4 Unsupervised Case

In the unsupervised case, model initialization is crucial for accurate viewpoint
classification, because no explicit constraint in the later stage of optimization is
imposed on the viewpoint labels. [4] partitions positive examples into component
groups based on a simple aspect ratio criterion. We use a Normalized Cut-based
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clustering scheme for initialization. We define an appearance distance between
two positive examples xi and xj as

d(xi, xj) = α · χ2(ψ0(xi), ψ0(xj)) + (1− α) · ‖Asp(xi)− Asp(xj)‖2 (4)

where ψ0(xi) is the HOG descriptor of xi under a standard template size, and
Asp(xi) is the normalized aspect ratio of the bounding box of xi. Next, we con-
vert the distances into affinity measurements using the exponential function and
obtain the component groups by applying the Normalized Cut[26] algorithm on
the resulting affinity matrix. This provides us with relatively even partitionings
on the positive examples, which is important for good unsupervised performance.

In the model update step, since Eqn. 3 describes an integer-based non-convex
problem([24], [27]), one tractable solution is to iterate between optimizing w

given fixed labels λ and optimizing λ given fixed template weights w. The former
is an SVM and the latter optimization step is simply

λpv = 1[v = argmax
s

(

wT
s xp

)

] ∀p = 1, . . . , P (5)

4 Continuous Viewpoint Models

In the continuous viewpoint case, we are interested in estimating the real-valued
continuous viewpoint angles of an example object in 3D, denoted by θ ∈ R

3,
which uses the angle-axis representation. We assume that the camera projection
of the object is orthographic so that given a fixed orientation θ, the appearance
of the object only changes in scale.

To obtain θ for a test object x, we modify the mixture model in the discrete
viewpoint case and reformulate the score function as

Sw(x) = max
v∈V,∆θ

f(v,∆θ) = max
v∈V,∆θ

(

wv + gTv ∆θ
)T
ψv(x) − d(∆θ) (6)

θ(x) = θv∗ +∆θ∗ (7)

where w = {wv} and ψv(x) are the same as before. gv are the “gradients” of
the template wv over θ at discrete viewpoint v. ∆θ are the offset viewpoint
angles of x with respect to the canonical viewpoint angles θv. d(·) is a quadratic
loss function that confines θ(x) to be close to θv. Denote ∆θ by their elements

[∆θ1, ∆θ2, ∆θ3]
T , then d(∆θ) =

∑

3

i=1
di1∆θi+ di2∆θ

2

i . In Eqn. (7), v∗ and ∆θ∗

are obtained when the score function reaches its maximum. The variables wv,
gv, θv and di1, di2 are learned from training data.

This continuous viewpoint model can be interpreted as follows: we parti-
tion the continuous viewpoint space into small chunks where each chunk has a
canonical viewpoint. For every viewpoint in the same chunk, we approximate its
template as a linear deformation of the canonical template with respect to the
difference of viewpoint angles from the canonical angles. We show that in prac-
tice, this approximation is reasonable when the chunk size is relatively small, and
the model produces viewpoint classification performance superior to a number
of baseline methods.
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Detection: The multi-scale window scanning is again applied for localizing ob-
jects in the image. To find optimal v and ∆θ in Eqn. (6) at a given location, we
first maximize ∆θ over any fixed v

∂f(v,∆θ)

∂∆θi
= gv(i)

Tψv(x)− di1 − 2di2∆θi = 0 (8)

Hence, we obtain

∆θi(v) =
(

gv(i)
Tψv(x)− di1

)

/2di2 (9)

where gv(i) is the i’th column of gv. Next, we enumerate over the discrete variable
v with ∆θi(v) and pick the pair with maximal score Sw(x).

4.1 Training

In training, for positive examples {x1, x2, . . . , xP }, their continuous viewpoint
groundtruth labels {θ1, θ2, . . . , θP } are given. Therefore, we rewrite the score
function in Eqn. (6) as

f(v,∆θ) = (wv + gv∆θ)
T
ψv(x) − d(∆θ) (10)

= w̃v
T ψ̃v(x) (11)

where

w̃v = [wv, gv(1), gv(2), gv(3), d11, d12, d21, d22, d31, d32]

ψ̃v(x) = [ψv, ∆θ1ψv, ∆θ2ψv, ∆θ3ψv,−∆θ1,−∆θ
2

1
,−∆θ2,−∆θ

2

2
,−∆θ3,−∆θ

2

3
]

If all canonical viewpoint templates θv are known, ψv(x) are completely ob-
servable and we can substitute w̃v and ψ̃v(x) for wv and ψv(x) in the training
framework of the discrete viewpoint case. Now, θv are unknown, but we can ini-
tialize them from initial partitions of positive data (clustering on θ) and update
them in each training iteration based on maximizing the cost function.

5 Experimental Evaluation: Discrete Viewpoints

For discrete viewpoint classification, we evaluate our proposed models on two
standard and challenging databases: the 3DObject[5] and the VOC2006 cars[8].
The 3DObject dataset consists of 10 categories and 8 discrete viewpoint annota-
tions for each category. We exclude the head and the monitor categories as they
are not evaluated in previous work. Quantitative results on viewpoint and cat-
egory classification are evaluated by means of confusion matrix diagonals, and
averaged by 5-fold training/test partitions. On the other hand, the VOC2006 car
database consists of 469 car objects that have viewpoint labels (frontal, rear, left
and right). In the experiments we only use these labeled images to train mix-
ture viewpoint models, with the standard training/test partition. The detection
performance is evaluated through precision-recall curve. For both databases, we
try our best to compare with previous works that have the same complete set of
evaluations.

In the following sub-sections, we analyze our results in three different levels
of supervision on the training data: supervised, semi-supervised, unsupervised.
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Database 3DObject VOC2006 cars

Method [5] Ours [6] [7] Ours
Viewpoint 57.2% 74.2± 0.9% 57.5% 73.0% 85.7%
Category 75.7% 85.3± 0.8% - - -

Table 1. Supervised Case: viewpoint and category classification results (quantified
by averages of confusion matrix diagonals). For category detection performance on the
VOC2006 cars, we compare the precision-recall curves with [7] in Figure 2(d).

5.1 Supervised Case

Table 1 summarizes the viewpoint and category classification results when the
viewpoint labels of the positive training data are known. We significantly outper-
form [5], the state of the art on the 3DObject database, in both viewpoint and
category classification. We also show a significantly higher (4-view) viewpoint
classification rate on the VOC2006 car database compared to the earlier work
of [6] and [7]. Figure 2 shows a close look of our results.

Note that in (a), the main viewpoint confusion pairs in 3DObject are those
off by 180 degrees, for example, frontal vs. rear or left vs. right views. Cate-
gory confusion matrix is shown in (b). (c) illustrates the change of viewpoint
classification rate with object recall in VOC2006 cars. The curve suggests that
the viewpoint classification accuracy increases with lower recall (and thus higher
precision/category detection). (d) compares the precision-recall curves of [7] with
ours. Note that even our car mixture model only covers 4 views, it still produces
superior performance comparing to [7] in detection.

5.2 Semi-supervised Case

In the semi-supervised case, we are interested in knowing how much partial infor-
mation from positive training data is “sufficient” to build a reasonable viewpoint
model. Figure 3 (a, b) illustrate the viewpoint and category classification accu-
racies with changes in the proportion of training data having discrete viewpoint
annotations. Zero proportion means no annotation which corresponds to the
unsupervised case, whereas “proportion equals one” is the case of being totally
supervised. Note that the accuracy numbers here are evaluated on the whole test
set, not the set including only correct category prediction. We notice that even
a small proportion (30% in the 3DObject) of annotated data significantly im-
proves the viewpoint classification performance, while the category classification
performance remains roughly constant with change of the number of annotated
data. (We do not show the curve of category classification on the VOC2006 cars
as it is a detection task.)

5.3 Unsupervised Case

Evaluation Methodology The upper half of Table 2 compares three model
initialization schemes in terms of the viewpoint and category accuracies. We
note that our proposed N-cut framework significantly outperformed the aspect
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Fig. 2. Supervised Case: viewpoint labels are all known for positive examples.
(a) (b) Average confusion matrices of the viewpoint and category classifications in
the 3DObject. (c) Viewpoint classification accuracy as a function of the object recall
in the VOC cars. (d) Precision-recall curves of car detection. Note that our car model
only trains on the 4-view cars and tests on the whole test images.

ratio criterion by [4] for viewpoint classification. We also compute how far we
can reach by computing an “upper bound” performance using the ground truth
viewpoint labels of training data in initialization, shown in the third column
of the first two databases. We see that the N-cut produces results close to and
sometimes even better than the “upper bounds”.

We quantitatively evaluate the quality of viewpoint clustering using the fol-
lowing statistics: purity, normalized mutual information, rank index, and F mea-

sure[28], shown in the bottom half of Table 2. All measurements of these statistics
exhibit consistent behavior as the basic evaluation.

Number of Model Components The number of components V in the un-
supervised model is pre-determined. As a result, we are interested in knowing
the impact of this parameter on the viewpoint and category classification per-
formance. Figure 3(c) shows both accuracies with V on the 3DObject database.
Note that for viewpoint classification, the accuracy undoubtedly breaks down
when V is deficient (4) to explain the variety of data in viewpoint (8). It is,
however, surprisingly insensitive to V when it gets large. On the other hand, for
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Fig. 3. Semi-supervised/Unsupervised Cases: viewpoint and category classifica-
tion accuracies as a function of either the proportion of positive training data with view-
point annotations (semi-supervised) or the number of model components/templates
(unsupervised). (a): Semi-supervised model on the 3DObject. (b): Semi-supervised
model on the VOC2006 cars. For these semi-supervised cases, the category detection
performance is robust and largely independent of the availability of viewpoint labels.
Viewpoint classification is robust up to about 30% of labeling. (c): Unsupervised model
on the 3DObject dataset.

category classification, the accuracy breaks down when V is large, and insensitive
with small V .

6 Experimental Evaluation: Continuous Viewpoints

For continuous viewpoint estimation, there is no standard benchmark database
available, partly because it is considerably harder to establish groundtruth data
to cover arbitrary 3D rotations. [19] uses a selected set of translations and rota-
tions for (continuous) pose estimation. [29] does not use groundtruth but com-
pare results using artificially distorted images. In the case of [30], rotation is
limited to in-plane rotation on the ground.

We believe that a good database with full 3D pose groundtruth is crucial
for the advances of pose estimation techniques, and we set to collect a 3D
pose database using commercially available IMUs: we use the Microstrain 3DM-
GX1 sensors and attach it to a PrimeSense video camera. The Microstrain pro-
vides gyro-stabilized full 3D orientation at about 80Hz, and the camera records
640x480 frames at 30Hz. The two streams are aligned manually.

We collect a continuous object pose database covering 17 daily objects with
a variety of shape, appearance and scale (Fig 5(a)). We put each object on
a turning table, let the object turn, while hand-holding the camera/IMU pair
and moving it at varying heights and orientations. We typically let each object
rotate for 4-5 circles and take about 2K video frames total. In our evaluation
experiments, we use all 17 objects and about 1K frames for each object. Frames
are evenly and randomly partitioned for training and testing. Object masks are
computed from background subtraction and are used to find bounding boxes.

We compare our continuous viewpoint model with two baseline methods.
The first one employs a nearest neighbor scheme. Each test example is assigned
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Database 3DObject VOC2006 cars

Method [4] N-cut Labels [4] N-cut Labels
Viewpoint 40.2% 51.5% 63.4% 47.0% 65.6% 65.3%
Category 86.5% 87.8% 87.2% - - -

Purity 0.42 0.53 0.65 0.58 0.77 0.76
NMI 0.43 0.55 0.61 0.41 0.52 0.50

Rank Index 0.77 0.83 0.86 0.71 0.80 0.80
F Measure 0.36 0.45 0.54 0.61 0.68 0.67

Table 2. Unsupervised Case: viewpoint and category classification accuracies as
well as four viewpoint clustering measurements[28] on two databases. We show com-
parison of 3 model initialization schemes ([4], N-cut, and Labels) on the 3DObject and
VOC2006 cars. Note that [4] performs poorly in viewpoint classification. The “N-cut”,
proposed in this paper where the numbers are bolded, produces significantly better
results than [4]. The “Labels” case uses the ground truth viewpoint labels to initialize
models, which are considered to produce the “upper-bound” results.

the same continuous viewpoint label as that of the example’s closest mixture
template. The second one learns a linear regression model on the responses of
all mixture templates to infer viewpoint labels. The comparison of the results
is shown in Figure 5(c) where prediction errors are measured by the amount
of rotation it takes to go from the predicted pose to the groundtruth pose (in
degrees). Because the errors can sometimes be very large due to the symmetry
in the object shape and appearance, we use the median angular error as the
evaluation metric.

Our proposed continuous viewpoint model constantly outperforms both base-
lines under different numbers of mixture templates. The errors are reduced as the
numbers of templates increase which suggests that a sufficient number of canon-
ical viewpoints is needed to cover the entire viewpoint hemisphere. A closer
examination of the per-category performance is shown in Figure 5(d). The er-
rors are in general large for symmetric categories(e.g. plate, bowl) and small
for asymmetric ones which meets our intuition. As we see from the examples,
the database is challenging: even though the background is simple and so far
instance-based, there is a lot of inherent ambiguity in inferring pose from shape,
and the improvement in accuracy using our continuous model is substantial.

7 Conclusion

In this work we have applied the discriminative template learning framework
for joint category and viewpoint classification. Our main contribution is to show
that a mixture-of-templates model discriminatively learned in a detection frame-
work capture the characteristics of different views and can be directly used for
viewpoint classification. Our results significantly outperform the state-of-the-art
on a number of standard 3D object databases. We have also shown that with
a good initialization (e.g. Normalized Cuts and discriminative clustering), we
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Fig. 4. Discrete viewpoint classification and category detection results. The yellow
bounding boxes indicate object detection, and the labels on the upper-right corners
show the predicted object category and viewpoint. The top 4 rows show results from
the 3D object category database, and the bottom row shows results from the PASCAL
VOC 2006 car database.

are able to produce meaningful viewpoint clusters and promising classification
accuracy with a small amount of training labels.

In addition, we have extended the mixture-of-templates approach to the con-
tinuous viewpoint case. We use a linear model to capture local appearance varia-
tions at each canonical view, and these models are discriminatively trained as in
the discrete case. We have been building up a dataset with continuous viewpoint
groundtruth, and our model has shown promising performance comparing to a
number of baselines, including discrete nearest neighbor and linear regression.

Although our work is still in a preliminary stage, we believe that our results
are very important in proving the use of discriminative learning for viewpoint
classification. It is no coincidence that our results outperform the state of the
art on 3D object databases. Just as in the category case, discriminative learning
addresses the classification problem directly and is very powerful in exploring
noisy image data. There are many future opportunities in exploring the synergies
between object classification and viewpoint estimation.
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