
Programmability - a New
Frontier in Graphics

Hardware

The Near Future
A Revolution in Graphics Hardware

• Moving from graphics accelerators to processors

• Full hardware OpenGL and DirectX pipelines

Programmability Changes the WorldProgrammability Changes the World

•• graphics hardware pipelines are becoming graphics hardware pipelines are becoming
massively programmablemassively programmable

•• will fundamentally change graphicswill fundamentally change graphics

•• allows hyperallows hyper--realistic characters, special effects, realistic characters, special effects,
and lighting and shadingand lighting and shading

3D Graphics is about

• Animated films (Bug’s Life, Toy Story, etc.)

• Special Effects in live action movies (The Matrix)

• Interactive Entertainment (Video games)

• Computer Models of real world objects
• Or, objects that haven’t been invented yet

• Making reality more fantastic

• Making fantasies seem real

Why are Movie Special Effects
Exciting and Interesting?

• Suspension of Disbelief
• Something amazing is happening

• But, you believe it, because it is “real”

• Realistic and detailed characters
• Motion, and emotion

• Realistic and recognizable materials
• Chrome looks like chrome

• Skin looks like skin

• Action!

Live action sfx slide

T & L

setup
rasterizer

texture
blending

fb
anti-alias

vertex transform
and lighting

per-pixel texture

The Year 2000 Graphics Pipeline

Pixar’s Geri – A Believable Old Man

• Not a real person

• Geri is built from Curved Surfaces

• Curved surfaces are broken down into triangles

• Each triangle is transformed into position

• Each pixel in each triangle is shaded

• Every frame
• 24 (movie) or 60 (PC)

times per second

3D Movie Special Effects Come to PC
and Console Graphics

• Lots of Geometry – lots of stuff going on
• Geforce does this – hardware Transform & Lighting

• The next generation makes the pipeline
programmable

• Lots of Lighting and Shading
• Geforce (year 2000)

• Hardwired vertex lighting

• Little “shader programs” run for every pixel

• Taking Shading to the next level (year 2001)
• Powerful “vertex programs” run for every vertex

• Powerful “shader programs” run for every pixel

curved
surfaces

vertex
shaders

setup
rasterizer

tex-addr
ops

texture
blending

fb
antialias

shadows
3d tex

per-vertex shading

per-pixel shading

The Year 2001 Graphics Pipeline

Microsoft xbox Powered by NVIDIA

• Next-Generation GPU from NVIDIA
• 10X Graphics performance Playstation2
• World’s First Tera-Op Processor

• Over one Trillion Operations Per Second (1.2TOPS)

• World’s first Programmable Shading Engine
• NVIDIA Custom Media/Communication Processor

• Broadband

• Unparalleled 3D Audio Capabilities

• Additional features include:
• 733MHz x86 compatible CPU
• 64MB of RAM (Unified memory architecture)

• 8GB hard drive
• 4X DVD drive with movie playback
• Four game controller ports

• Expansion port

Effects Explained

• (1) Shadows
• Raven’s arm casts a shadow

on her body
• (2) Reflections

• Robot reflects Raven and the
world

• (3) Lighting, shading and
materials
• Raven’s clothing looks like

cloth with wrinkles and shape
• (4) Programmable Vertex Shading

• Raven’s arms and body bend
smoothly, like real arms

• (5) Anti-aliasing
• Edges are smooth, not

jagged
2

4

1

3

5

Programmable Vertex Processing

• GeForce family introduced hardware T&L to the PC
• Transform and Lighting

• Next generation makes T&L user programmable
• Vertex programs

• Developers can write custom
• Vertex Transformation

• Vertex Lighting

• Special effects (layered fog, volumetric lighting,
morphing…)

Developers Have Been Asking For…

• Complete control of the transformation and
lighting hardware

• Complex vertex operations performed in
hardware

• Custom vertex lighting

• Custom skinning and blending

• Custom texgen

• Custom texture matrix operations

• <your request goes here>

Custom Substitute for Standard T&L

Constant
Memory

96 entries

128 bits
4 floats

16 entries

13 entries

12 entries

Vertex Input

Vertex Output

Registers
Programmable

Vertex
Processor

A0

128 instructions

a
d

d
r

data

128 bits
4 floats

128 bits
4 floats

128 bits
4 floats

What does it do?

• Per vertex calculation

• Processing of:
• Colors – true color, pseudo color

• 3D coordinates - procedural geometry, blending,
morphing, deformations

• Texture coordinates – texgens, set up for pixel
shaders, tangent space bumpmap setup

• Fog – elevation based, volume based

• Point size

• Vertex program accepts one input vertex,
generates one output vertex

Plus: Novel Effects… (Demos Later!)

• Irregular view transformation
• Fish-Eye lens, …

• Novel texture coordinate calculations
• Projected textures

• Paletted skinning with 20 or more bones!
• Now you can be much more efficient than with

DirectX7™

• Geometry morphing
• Blending multiple meshes

• Procedural Geometry Deformations

Vertex Programs
Physics on the GPU

Programmable Shaders
make possible

materials

lighting

reflections

shadows

Evolution of Hardware Shading

• Hardware Rasterizers and perspective-correct
texture mapping (RIVA 128)

• Single Pass Multitexture (TNT / TNT2)

• Register Combiners: a generalization of
multitexture (GeForce 256)

• Per-pixel Shading (Geforce 2 GTS)

• Programmable Hardware Pixel Shading

Single Texture Programming Model

Texture
BlenderTexture 0

Source

Result

Register Combiner Programming
Model

Texture
Combiner

Texture 0

Source(s)

Result(s)

Texture 1 Registers

Pixel Shading Pipeline

4 Pixel Shader
Stages

Triangle
Rasterizer 8 Combiner

Stages

Specular / fog
Combiner

ROP &
Frame
buffer

Pixel Shaders

Pixel shaders use:

• Floating point math

• Texture lookups

• Results of previous pixel shaders

A pixel shader converts a set of texture
coordinates (s, t, r, q) into a color (ARGB),
using a shader program.

Simple Dependent Textures

The results of one shading program can be
interpreted as the texture coordinates for a
subsequent texture lookup.

• AR →→ (s, t)

• GB →→ (s, t)

Texture lookups become
arbitrary functions.

4 Pixel Shader
Stages

Triangle
Rasterizer

Register Combiners / Texture Blending

• Strict superset of framebuffer alpha blending
capabilities
• a*b+c*d

• Register-based programming
• All textures and colors available for each and every

texture blending stage

• 8 Stages

• Signed color arithmetic

A “processor model” for Per-pixel
Shading

• Computation primitives:
• Texture addressing

• Cube maps

• Volume textures

• Comparison & muxery

• Register combiners

• Vector math (dot3, reflection, etc)

• Hardware shading is now
• Programmable

• Extensible

The Near FutureBumpy Shiny Patch

• The bumpy_shiny_patch demo illustrates three
key new extensions working together
• NV_evaluators

• NV_vertex_program

• NV_texture_shader

• The goal of bumpy_shiny_patch is to render a
bumpy, mirrored, and deformable patch -- with an
RGB glossmap to boot

The Bump Map and Gloss Map

The Environment Map

The Results

host
interface

primitives

setup &
rasterizer

tex-addr
ops

texture
blending

frame buffer
anti-alias

shadows
3d tex

per-vertex programs

per-pixel shading

Future Graphics “Pipeline”

per-primitive and

smart
memory
interface

Acknowledgements

• Thanks to Mark Kilgard, Sim Dietrich, Matthew
Papakipos, Simon Green, Cem Cebonoyan, Erik
Lindholm, Doug Rogers, Cass Everitt, and other
NVIDIA wizards for contributing slides, demos,
and images.

