Video Content Description: From Low-Level Features to Semantics

A. Murat Tekalp University of Rochester www.ece.rochester.edu/~tekalp

PhD Students

Ahmet Ekin, A. Mufit Ferman, Yaowu Xu

Overview

#Learning from Examples
#Background: MPEG-7

How-Level and Semantic-Level Modeling of Object Motion

An Integrated Semantic-Syntactic Video Model
and Model-Based Query Processing

#Automatic Frame-Based Video Summarization: From Low-Level Features to Semantic-Level

Learning from Examples

Application: Personal Image Library System

- 1. "Learn" from examples to extract and annotate semantic objects automatically
- 2. Perform low-level feature, such as color and shape, between database images and example template

Formation of the Initial Content Hierarchy

- ₭ Color Edge Detection
- Color Segmentation
- **#** Region Formation by integration of multiple cues
 - Split regions containing edges into multiple regions
 - Merge regions using a highest confidence decision method
- **#** Initialization of the Content Hierarchy

Examples - Shape Similarity Matching

Examples - Color Similarity Matching

Query template

Hierarchical Content Matching

 Query Modes
 High-level queries at the object level Example: Find "cars"
 Low-level queries at the region level Example: Find a blue color region

- ₭ Matching Measure
 ▲ Color histogram intersection
 ▲ Hausdorff distance
- Hierarchical Content Matching
 - △ Top-down fashion
 - Highest-level (composite) nodes first.
 - No match in higher level, go to lower level

Semantic Segmentation

Overview of Some Elements of MPEG-7

MPEG-7 Segment DS

Feature	Video Segment	Still Region	Moving Region	Audio Segment
Time	Х		Х	Х
Shape		Х	Х	
Color	Х	Х	Х	
Texture		Х		
Motion	Х	•	Х	
Camera motion	Х			
Mosaic	Х	•	•	
Audio features	•	•	Х	Х

Audio-visual segment

MPEG-7: Semantic DS

Semantic Relations:

- Object to object
- Object to event
- Event to event
- STime to event
- SPlace to event
- SBase to segment

MPEG-7: Summarization DS

Key frames; Key video clips; Key audio clips; Key events; mixed.

Video Analysis / Feature Extraction

Low-Level and Semantic-Level Modeling of Object Motion

From Low-Level to Semantic Level

Goal

Content of the low level
 Content of the low

Consistent Hold Consistent Construction Hold Construction Construc

Interactions

Events

Problems

Here a shot is too coarse a temporal resolution to describe its motion both semantically and at the low level.

₩ We define segments which enable meaningful description of semantic and low-level motion of objects and interactions between them.

₩ We describe scene motion (events) by composing object actions and object-to-object interactions.

Object-Based Motion Description

Parametric Motion Descriptor

ModelCode	Meaning	Number of parameters	
0	Translational model	2	
1	Rotation/scale model	4	
2	Affine model	6	
3	Perspective model	8	
4	Quadratic model	12	

StartTime specifies the beginning of the temporal interval. **EndTime** specifies the end of the temporal interval.

MotionParameters[] is a floating point array that keeps the values of the model parameters. Its size depends on the motion model specified by ModelCode.

SpatialRegion a pointer to the spatial region the model is associated with.

Xorigin, Yorigin are the coordinates of the origin of the spatial reference with respect to the image coordinates.

Extraction of Motion Descriptions

Procedure

Detection of EMUs

Example: Children Sequence

AU "pick up the ball"

AU "throw the ball"

AU "stand"

An Integrated Semantic-Syntactic Video Description Model

Integrated Semantic-Syntactic Model

- # Integrated semantic-syntactic model: Enables efficient mixed-level query processing; "Find all penalty kicks shot to the left of the goalie"
- **#Actor entity:** Enables incorporation of context in object-event relationships
- **Hodel-based query processing:** Graph/tree matching; e.g., "Find all clips similar to this one"

Abstract Event Model

Query Processing

User Interface

Video Processing: Trajectory Estimation

Frame-Based Video Summarization and Shot Classification

Framework

Shot Boundary Detection

Extraction of Low-Level Shot Features

- GoF Color
- Spatial Layout
- Motion Activity
- △Shot Duration, …

Key Frame Extraction - for visual summarization

₭ Fuzzy Clustering to Generate Domain Models

Analyze New Content in the Domain using the Generated Domain Model (similar to VQ)

Common approach: Describe visual and color content of a shot with key frames and key frame histograms, respectively.

The provided color description may vary significantly with key frame selection criterion

#Alternative: Consider color content of all frames
for representative histogram computation

○ Robust color histogram descriptors that are unaffected by outlier frames due to <u>camera</u> <u>movement</u>, <u>occlusion</u>, <u>text/graphics overlays</u>, <u>brightness variations</u>, <u>etc.</u>

Alpha-Trimmed Average Histograms

Key Frame Selection

✓ For each GoF /, compute

$$E_i = \|H_i - H_l\|$$
 $i = 1, ..., N.$

△The frame r that minimizes E is the key frame

News Unit Generation

Location-Based Browsing Using Establishing Shots

