
Constructional Analysis

John Bryant
Department of Computer Science

University of California at Berkeley
Berkeley, CA 94720

jbryant@icsi.berkeley.edu

Abstract

We describe a unique rule-based language anal-
ysis system that performs both syntactic and
semantic analysis using construction grammar.
The analyzer supports a grammar formalism
called the Embodied Construction Grammar
(ECG), which is described in the paper along
with the computational machinery needed to
support such an expressive grammar. We also
show how to leverage the rich semantics asso-
ciated with an ECG grammar. With the rich
semantics, the analyzer can place an ordering
on competing analyses and can also better re-
spond to unanticipated syntactic patterns. The
paper then closes with a description of the ana-
lyzer’s current applications.

1 Introduction

The constructional analyzer is a language analysis sys-
tem that utilizes a grammar formalism called construc-
tion grammar to combine traditional syntactic and se-
mantic analysis into one process. A construction is a
pairing of form and meaning, acting as the cognitively-
motivated bridge between the syntax and the semantics.
Since form and meaning are inextricably entwined, the
constructional analyzer performs syntactic and semantic
analysis concurrently, producing a web of syntactic and
semantic relations called a constructional analysis.

Our approach to language analysis is unique because
it is the first to seriously utilize this notion of construc-
tions. Historically, there was a gap between grammar for-
malisms precise enough to be used in language analysis
and those used in the cognitive approaches to language
from which construction grammar springs. The Em-
bodied Construction Grammar formalism (ECG) (Bergen
and Chang, 2002) was designed to make construction

grammar precise enough to be implemented by provid-
ing a formalism that marries the precision of unification
grammar with the expressiveness of cognitive linguistics.

Since ECG is more expressive than traditional gram-
mar formalisms on both the syntactic and semantic sides,
our approach to constructional analysis needs to be more
flexible than traditional analysis methods to support all
the mechanisms in the formalism. The basic system is an
implementation of these mechanisms.

A system that supports so much flexibility also needs
to balance that flexibility against the increased computa-
tional burden that comes along with it. In a manner anal-
ogous to the two poles–the form and meaning–of a con-
struction, our approach to minimizing the computational
impact also has two sides, one for the form and one for the
meaning. On the form side, the system uses ideas from
the partial parsing community for more scalable recogni-
tion of syntax. On the meaning side, the system leverages
the cognitively-motivated semantics to heuristically rank
analyses with a metric we refer to as semantic density.

In the next section, we provide a description of ECG.
Section 3 further describes how the analyzer works and
Section 4 describes two demanding language analysis
tasks requiring the semantic capabilities provided by the
constructional analyzer.

2 Embodied Construction Grammar

The grammar formalism that makes constructional anal-
ysis possible is the Embodied Construction Grammar
formalism. ECG combines a grammar formalism and
knowledge representation language in a unification-based
framework. This allows both constructions and frame-
based, schematic knowledge to be expressed succinctly
in the same formalism.

As usual for construction grammar, the grammar
rules in ECG are pairs, mapping a particular lexi-
cal/morphological/syntactic pattern to a (partial) specifi-
cation of a situation. In ECG, this description of a situa-



schema Container
subcase of Image-Schema
roles

interior :
exterior :
portal :
boundary :

schema SPG
subcase of Image-Schema
roles

source :
path :
goal :

schema Trajector-Landmark
subcase of Image-Schema
roles

trajector :
landmark :

Figure 1: Some image schemas in ECG notation.

tion is known as a semantic specification (semspec). The
semspec combines embodied semantic primitives like
image schemas (Lakoff, 1987) and executing schemas
(Narayanan, 1997) with frame-based knowledge (Fill-
more, 1982) to completely specify the meaning of an ut-
terance.

Meaning in ECG is represented by schemas. Schemas,
much like frames, are schematic, role-based conceptual
and semantic structures. The schema formalism, how-
ever, is augmented augmented by special semantic op-
erators that provide enhanced semantic expressiveness,
making it easier to precisely describe insights from the
cognitive semantics community.

As an initial starting point into the formalism, figure 1
shows three canonical image schemas in ECG notation.
Each schema is initially defined by the keyword schema,
and after the name, an optional subcase of line denotes
the structures from which the current schema inherits.
Much like frames, ECG schemas (and constructions) are
arranged into a type hierarchy In this case, each image
schema inherits from the Image-Schema type. Following
the subcase of, comes the optional roles block, denoted
by the roles keyword. Just like the roles of a frame, the
roles of a schema are the parameters of the concept being
described.

These simple image schemas do not show off all of
ECG’s schema mechanism, however. For a more com-
plete picture, we now focus on the Into schema shown
in figure 2. The Into schema subcases the Trajector-
Landmark schema, and thus inherits the trajector and
landmark roles from its parent. The Into schema further
constrains the landmark role by constraining it to be of
type Container.

schema Into
subcase of Trajector-Landmark
evokes SPG as s
roles

landmark : Container
constraints

trajector ←→ s.trajector
s.source ←→ landmark.exterior
s.goal ←→ landmark.interior

Figure 2: The Into schema.

construction IntoCxn
subcase of Spatial-Relation
form : Word

selff .orth ←− “into”
meaning : Into

Figure 3: The Into lexical construction.

The Into schema also introduces the new evokes op-
erator which makes the specified type locally accessible
via the given alias. In this case, the evoked SPG schema
acts as the background frame, capturing into’s notion of
motion. This is the primary virtue of the evokes opera-
tor. It provides a way to place concepts such as bachelor
into the context of their larger background frames, as de-
scribed by (Fillmore, 1982).

After the roles block in the Into schema, comes the op-
tional constraints block. Constraints act as the semantic
glue with the↔ identifying its two argument slots. When
a set of slots have been coindexed, a proposed filler to
any one of those slots must satisfy the restrictions of all
of them. In the Into schema, the locally defined land-
mark.interior1 role2 is identified with the evoked SPG’s
goal role, while the landmark.exterior role is coindexed
with the SPG’s source role. These constraints schemati-
cally describe how the use of into suggests motion from
outside some container to the inside of that container.

Figure 3 shows the Into lexical construction. Every
construction starts with the keyword construction, fol-
lowed by the name of the construction. Then comes the
optional subcase of keyword that relates constructions to
the constructional type system. The ECG version of the
Into construction has a form and meaning pole, notated
by the keywords form and meaning.

Constructions type their form and meaning poles. In
the case of our Into construction, the form pole is of
schema type Word3 and the meaning pole is of type Into

1ECG uses slot chain notation.
2The landmark role has an interior role because it was con-

strained to be of type Container.
3Form in ECG is also represented with schemas.



schema. A typed meaning pole indicates that a particu-
lar construction denotes an instance of that type. Thus
our Into construction claims that the word into means an
instance of the complex relation described by the Into
schema.

The Into construction also exhibits the assignment op-
erator (←). This operator fills a slot with an atomic value.
In our Into construction’s form pole, the orth4 feature
brought in from the Word schema is assigned the atomic
string into.

Figure 4 shows the clausal Caused-Motion construc-
tion, an example of which is The basketball player threw
the ball into the basket. This construction has an agent
(the player) which acts upon a patient (throwing the
ball) thereby moving it along a path (into the basket).
Since the Caused-Motion construction links a particular
syntactic form, that of a referring expression, a force-
application verb, a referring expression and a path to a
Caused-Motion-Scene5, the construction is different from
the ones we have covered so far in that it has constituents
that are themselves constructions. Thus instead of typing
the form block, the form block has constraints relating
the constituents.

Each of the construction’s four constituents are defined
in the constructional block. Each constituent is assigned
a local name, and then after the colon, the constructional
type is defined. If necessary, like in the case of the Verb
constituent, a semantic type is added in brackets.

The ordering of these constituents is specified by
adding form constraints to the form block. When the con-
structional analyzer searches for instances of a construc-
tion, these form constraints must be satisfied. The two
supported constraints are before which requires that the
left argument be somewhere the left of the right argument
in the input, and meets which requires the left argument
to be directly before the right argument in the input.

In the Caused-Motion construction, the form con-
straints require that the agent be directly before the verb
and the verb be before the path and patient. Notice that
the relative order of the path and patient is left unspec-
ified6. Because ECG allows constituent order to be un-
specified like this, ECG can express with one rule what a
CFG might have to express with an exponential number
of rules.

The meaning pole of the construction uses the seman-
tic machinery that has already been described. It links
the agentm’s category to the agent of the scene as well as
setting patientm.category to the trajector of the specified
path. Notice that the constraints use the m and f sub-

4Orth is short for orthography.
5A caused motion scene is one where the agent applies force

to the patient resulting in a shift in the position of the patient.
6This might be a partial solution for dealing with what are

called heavy NPs briefly described in (Bryant, 2003).

construction Caused-Motion
subcase of Clause
constructional

agent : RefExp
verb : Verb[Apply-Force]
patient : RefExp
path : Spatial-Predication

form
af meets vf

vf before pf

vf before paf

meaning : Caused-Motion-Scene
selfm.action ←→ verbm

agentm.category ←→ selfm.agent
patientm.category ←→ selfm.patient
selfm.path ←→ path.m

schema Caused-Motion-Scene
subcase of Transitive-Scene
evokes Cause-Effect as c
roles

result-motion : Move
path : SPG

constraints
c.cause ←→ action
c.effect ←→ result-motion
result-motion.executor ←→ patient
result-motion.path ←→ path
path.trajector ←→ patient

schema Transitive-Scene
subcase of Scene
evokes Apply-Force as a
roles

patient : Entity
constraints

action ←→ a
patient ←→ a.patient

schema Scene
roles

agent : Agent
action : Action

schema Cause-Effect
roles

cause : Action
effect : Action

schema Apply-Force
subcase of Action
roles

patient : Entity

Figure 4: The Caused-Motion Construction and related
schemas.



scripts when referring to the constructional constituents’
form and meaning poles, respectively, and can be applied
to any construction as if they were just dotting into the
structure.

With a formal language for describing constructions,
many avenues are opened. The most important for the
sake of this work, is that it is precise enough to be im-
plemented. More specifically, ECG’s unification-based
lineage makes it possible to translate ECG into the fea-
ture structures that are manipulated by the constructional
analyzer.

3 The Constructional Analyzer

The approach to constructional analysis we describe in
this report uses a level-based syntactic processing model
(Abney, 1996). Level-based processing models are more
efficient at recognizing syntax because they sacrifice full
recursion in the grammar. Each grammar rule is assigned
a level and can only take constituents from the levels be-
low it. As a consequence, the analysis task is decoupled
a into a chain of smaller analysis tasks.

Such a model was exploited by systems like FASTUS
(Hobbs et al., 1996) for efficient extraction of shallow
semantic information. But instead of doing shallow se-
mantic analysis for the purposes of information extrac-
tion, the constructional analyzer utilizes both the seman-
tic richness of construction grammar and extended com-
putational mechanisms to do full constructional analy-
sis, resulting in both a complete syntactic analysis and
a deep semantic analysis. The constructional analyzer in-
tegrates the following computational capabilities to make
deep analysis possible.

• Support for unification

• Support for multiple concurrent analyses with a
chart

• Support for the more flexible form relations found
in ECG

• Support for ECG’s semantic expressiveness

• An analysis evaluation heuristic

• A method for extracting meaningful semantics from
partial analyses

3.1 The Basics of the Constructional Analyzer

Since ECG is a unification-based formalism, supporting
unification is a necessary first step. Along with unifica-
tion, a chart is employed by the system to keep track of
the many possible analyses generated during rule-based
language analysis.

On the form side, the analyzer cannot use finite state
machines or even context free grammars to do matching

because of ECG’s more relaxed notion of form. ECG
does not require the grammar writer to specify a total
ordering on a construction’s constituents, and thus rec-
ognizers requiring a total ordering (like CFG parsers) in
each rule are unusable. The constructional analyzer in-
stead uses a computational unit called a construction rec-
ognizer

A construction recognizer is a chunk of active knowl-
edge into which a construction gets transformed. Each
construction recognizer is designed to check both the
form and meaning constraints of just the construction it
models. In other words, instead of a monolithic parser
that takes the grammar rules as input, the constructional
analyzer itself is a collection of active construction rec-
ognizers working together to generate the constructional
analysis.

3.2 Making The System More Robust

Given the mechanisms just described, we already have
an approach that will take ECG grammars and generate
constructional analyses for every utterance supported by
the grammar. Although, when it comes to building a real
system, this is not enough. This section describes exten-
sions built into the constructional analyzer to better deal
with the challenges associated with trying to analyze real
language.

Once such challenge language analyzers are faced with
is robust behavior when encountering a well-formed and
meaningful utterance not licensed by the grammar. Since
it is very hard for linguists to try and anticipate every pos-
sible meaningful utterance, frequently well-formed lan-
guage falls through the grammatical cracks.

The ambiguity of language poses another challenge be-
cause a particular utterance can be analyzed in so many
different ways, that later stages of analysis cannot pro-
cess them all to find the most appropriate. Thus heuristic
methods for indicating which analyses are more likely to
be correct can help focus later stages of processing.

Stepping up to these challenges requires a blend of
computational mechanism and linguistic insight. The use
of the level-based approach is one such example of this
blend, but the deep semantics is the real key to making
headway. Given the early pairing of form and meaning
afforded by constructions, an analyzer with access to such
semantics can leverage them to better respond to unantic-
ipated utterances and highlight analyses more likely to be
correct.

3.2.1 Leveraging The Semantics

The key insight behind our approach to making the sys-
tem more robust is the realization that every utterance is
trying to communicate a scene. This common scene that
the referents in the utterance participate in is parameter-
ized into frames and image schemas in ECG. Now as-













Commercial-Event 1
buyer : Harry
seller : Bill
goods : a car
price :





















Commercial-Event 2
buyer : Harry
seller : Bill
goods : a car
price : 1500











Figure 5: The semantic density metric used to com-
pare two semspecs each containing a Commercial-Event
frame. The Commercial-Event frame on the left has a se-
mantic density score of .75 and the Commercial-Event on
the right has a score of 1. Thus the second frame would
be considered better because more of the frame elements
are filled in.

suming that a better analysis is one that better describes
the scene, one way to compare analyses is by how com-
plete each parameterization is. Those analyses that fill
out more of the parameters would be preferred to those
that filled out fewer parameters. This is the motivation
for the ranking heuristic that we call semantic density.

Semantic density compares constructional analyses
based upon their semantic content. Analyses that have
a higher ratio of filled slots to total slots in their semspec
are considered better analyses according to semantic den-
sity7. A metric like semantic density not only provides
the analyzer with a way to focus on the more complete
analyses at the end of the analysis process, but it also
makes early pruning a possibility. Figure 5 shows a sim-
ple example of the semantic density metric in use.

3.2.2 Partial Analyses
In the case of a missing construction, the analyzer is

faced with many partial analyses that span some of the
input, but no constructional root that spans all of the ut-
terance. In this scenario, the constructional analyzer must
salvage meaning from the constituent pieces of some
non-existent construction. All is not lost though, since
the analyzer has stored all recognized constituents in the
chart. Given these constituents, the analyzer can try col-
lections of spanning, non-overlapping constructs, and see
how well they fit together8.

We can precisely define how well the collection of con-
structs fits together by looking at the collection’s sem-
specs. After grouping their semantic structures, the an-
alyzer performs structure merging9 For every evoked

7This, of course, is not the only possible metric. For exam-
ple, one might also want to consider the number of bindings,
the number of schemas in each semspec, or the total complexity
of construal. If a large corpus of semspecs were available, one
could use machine learning techniques to decide how to com-
bine these metrics.

8Obviously, the search strategy used for choosing which
constructs to try affects the complexity of this process.

9FASTUS used structure merging as well, but it was used
for resolving structures across utterances, not explicitly within

0. Lexical constructions

1. Noun noun compounds

2. Adjectives

3. Referring expressions

4. Spatial Predications

5. Clausal constructions

Figure 6: The levels used in the example analysis.

structure, if there is another schema that has the same
type and is unifiable, then those structures are merged
into one structure holding their combined semantic con-
tent. This phase in the constructional analyzer simulates
the bindings that might hypothetically have occurred had
there been a construction to license this collection of con-
stituents.

To minimize the number of partial analyses that struc-
ture merging is performed on, preference is given to par-
tial analyses that span with the fewest number of con-
structs. Out of the remaining candidates, how well a par-
ticular set of constructs fits together can be measured with
the semantic density metric. Because the system com-
pares analyses with a semantic metric, comparing partial
analyses is no different than comparing complete analy-
ses.

By this point, we have laid out the design of an ana-
lyzer that not only supports the richness provided by con-
structions, but also uses mechanisms to turn the “burden”
of semantics into a virtue by leveraging the semantics in
unique ways. At least at the conceptual level, such a
system would not only be robust, but semantically rich
enough for deep, simulation-based understanding as de-
scribed in (Bergen and Chang, 2002). Such a system
would be appropriate for any environment where deep
understanding is a necessity.

3.3 An Example

In order to make the previous discussion more concrete,
let’s analyze an example sentence using the Caused-
Motion construction described earlier. The sentence we
will consider is The basketball player threw the ball into
the basket. Given a grammar that can handle simple refer-
ring expressions of the form (Det) Adj* Noun+ (making
sure to add the appropriate semantics) and spatial phrases,
we can arrange the rules into levels (see figure 6) and gen-
erate analyses that use the Caused-Motion construction.

Figure 7 shows an example noun-noun compound con-
struction used in the analysis that puts constituents of

a single utterance.



construction Noun-Noun-Compound
subcase of Category
constructional

a : Category
b : Category

form
af meets bf

meaning
selfm ←→ bm

Figure 7: A Generic Noun-Noun-Compound construction
that just sets the meaning of the construction as a whole
to be that of the second constituent. It relies on struc-
ture merging to infer the correct relation between the two
Category constituents.

type category10 together to generate an instance of type
Noun-Noun-Compound which is itself subtype of cate-
gory. Thus the rule is recursive with itself and any other
category-requiring rule. Notice that it is on the same level
that all other category constructions are assigned. The
constructional analyzer allows the constructions assigned
to the same level to be mutually recursive.

After the Category constructions are processed, simple
referring expressions are generated. After the referring
expressions, Spatial-Predication constructions are recog-
nized on the next level, and the constructional analyzer
is finally ready to match the Caused-Motion construction.
Figures 8 and 9 (and the rest of this section) describe the
matching process schematically.

In frame A of figure 9, the construction recognizer is
in its initial state and it has not found any of the con-
stituents for the Caused-Motion construction. In B, the
recognizer has found a referring expression correspond-
ing to the basketball player, and since it unifies with the
agent role of the Caused-Motion construction, it is ac-
cepted as the first constituent. Notice how the node in the
graph corresponding to the agent is removed indicating
that it has been found.

In frames C and D, the same scenario takes place ex-
cept it is the verb threw and the referring expression the
ball that satisfy the form and meaning requirements of
their corresponding constituents. Notice in C that the
construction recognizer is now allowed to find either the
patient or the path since both nodes have no incoming
edges. In E, we see a completely matched Caused-Motion
construction with a complete Caused-Motion scene and
an empty constituent graph indicating that a complete in-
stance of this construction has been found.

In short, the construction recognizer builds up a graph
data structure to keep track of the constituents and an in-

10An instance of the category construction can either be
what is usually considered a noun like dog or a noun-noun com-
pound like vinyl siding salesman or gas meter turn-off valve.

path

patient

agent verb

Figure 8: The constituent graph structure for the Caused-
Motion construction. Each constituent corresponds to a
node in the constituent graph. At any particular point, the
construction recognizer is only allowed to search for con-
stituents with no incoming edges. When a constituent is
found, its node is removed from the graph along with any
outgoing edges from that node. After removing a node,
the construction recognizer is now allowed to search for
different, newly-released constituents or if there are no
nodes left, then a valid instance of the construction (at
least with respect to the form constraints) has been found.

progress semspec to keep track of the semantics. Each
constituent that satisfies the form and semantic con-
straints updates the constituent graph and the in-progress
partial semspec. The final result for a successful match
has the agent of the caused motion scene to be the player,
the patient being the ball, and the goal of the path being
the interior of the basket.

3.4 Partial Analyses

While we have seen how the system when works when
every construction necessary for an analysis has been de-
fined, but how can the analyzer salvage analyses when all
the necessary constructions have not been defined. Con-
sider the case in which the Caused-Motion construction
itself had not been present. In such a scenario, if the se-
mantics were appropriately encoded in the grammar, it
might still be possible to generate the correct inferences.

Figure 10 shows the lexical construction and schemas
associated with threw. The construction evokes the de-
fault scene that a throw action is associated with. The
Caused-Motion scene is a parameterization of a scene in
which an agent applies some force to a patient, sending
that patient along a path. Attaching the semantics to the
verb using the evokes operator allows the verb to be con-
nected to a particular argument structure, but without re-
quiring that the verb appear only in that argument struc-
ture11.

11This approach to lexical semantics is consistent with a con-



A

Caused-Motion Scene

agent: the player

action: 

path: 

patient: 

path.trajector: 

the

basketball

player

B

Caused-Motion Scene

agent: the player

action: threw

path: 

patient: the ball

path.trajector: the ball

the

basketball

player

threw the ball

D

Caused-Motion Scene

agent: the player

action: threw

path: 

patient: 

path.trajector: 

the

basketball

player

threw

C

Caused-Motion Scene

agent: the player

action: threw

path: into the basket

patient: the ball

path.trajector: the basket
the basketball

player

threw into the

basket

the ball

E

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion Scene

agent: 

action: 

path: 

patient: 

path.trajector: 

agent verb

patient

path

verb

patient

path

patient

path path

Caused-Motion

agent verb pathpatient

Figure 9: Snapshots of the internal state of the Caused-Motion construction recognizer on the sentence The basketball
player threw the ball into the basket.



construction Threw
subcase of Verb
form : Word

selff .orth ←− ”threw”
meaning : Throw-Action

schema Throw-Action
subcase of Caused-Motion-Action
evokes fly as Fly-Action
roles

thrower : Agent
throwee : Entity

constraints
thrower ←→ executor
throwee ←→ patient
result-motion ←→ fly

schema Caused-Motion-Action
subcase of Apply-Force
evokes Caused-Motion-Scene as cms
roles

path : SPG
constraints

executor ←→ cms.agent
patient ←→ cms.patient
path ←→ cms.path
self ←→ cms.action

Figure 10: The threw lexical construction and associated
schemas. This construction defines the meaning of a verb
to be the Throw-Action x-schema.

Figures 11 and 12 show the combined semspecs after
the Spatial-Predication has been matched, but before the
Caused-Motion construction is activated. Even before en-
countering the Caused-Motion construction, however, the
analyzer could have made sense of this semspec. This is
because the analyzer already has an idea about which se-
mantic complements that threw takes because its lexical
construction indirectly evokes the Caused-Motion-Scene
schema.

When the evoked Caused-Motion-Scene was added
to the semspec (by the Throw-Action schema that is
the meaning pole of the Threw construction), it added
dummy place-holder schemas for the agent, patient, and
path roles. These schemas also have the property of
being evoked because the schema they belong to is
evoked. Now if the analyzer merged unifiable structures,
the agent’s dummy schema would be unified with the
Player schema, the patient’s dummy schema with the Ball
schema, and path’s dummy SPG with the SPG brought
into the semspec by the Spatial-Predication. This is ex-
actly what the analyzer does, as shown in figure 13.

The ball could not have been unified with the agent be-
cause it does not have agentive properties (without some
kind of construal). Further the Basketball schema could
have been unified with the patient, but that would be dis-
preferred because at least one of the syntactically licensed
referents would not have been a part of the scene at all.

Also notice the unification of the evoked Game and
Basketball schemas that were brought in by The basket-
ball player phrase. This simple structure merging mech-
anism successfully merged the background frames, lead-
ing to the correct semantics. i.e. that the player was a
player of basketball.

Such a simple mechanism for inferring semantic roles
can be very helpful at generating meaningful analyses
when the syntactic coverage is lacking. The primary re-
quirement on the grammar writer is for the lexical items
to be imbued with enough semantic information to make
inferences such as these possible.

The inferential mechanism is not perfect, though, as it
could lead to incorrect inferences. Consider the sentence
The linebacker pushed the offensive tackle into the quar-
terback. Without the Caused-Motion construction to link
the grammatical subject of the sentence to the agent, one
possible inference that the analyzer might make is that
the patient was the linebacker and the agent was the of-
fensive tackle, in effect assuming that it was analyzing a
language where patient comes before agent12. Of course

struction grammar approach to argument structure, as it allows
the meaning of a verb to be the combination of its semantics
and the semantics of the construction it appears in. For more
information see (Goldberg, 1995).

12Remember that this inference did not happen in the last ex-
ample because a ball does not generally have agentive proper-







SCHEMA (Referent)
category : 1

givenness : uniquely-identifiable









SCHEMA (Basketball-Game)
players :

equipment :





1

[

SCHEMA (Player)

game : 2

]

2





SCHEMA (Game)
players : 1

equipment :





(a.)

7













































SCHEMA (Throw-Action)
thrower : 3

executor : 3

[

SCHEMA (Agent)
]

throwee : 4

patient : 4

[

SCHEMA (Entity)
]

path : 5









SCHEMA (SPG)
source :

path :

goal :
trajector : 4









fly : 6

cms : 8













































8























SCHEMA (Caused-Motion-Scene)
patient : 4

agent : 3

action : 7

result-motion : 6

path : 5

a (Apply-Force) : 7

c (Cause-Effect) : 9























9





SCHEMA (Cause-Effect)
cause : 7

effect : 6





6





SCHEMA (Fly)
path : 5

executor : 4





(b.)

Figure 11: The semantic structures associated with The
basketball player in (a.) and threw in (b.). The Referent
schema in (a.) is the meaning of the whole referring ex-
pression. The single Throw schema in (b.) is the meaning
of the verb.





SCHEMA (Referent)
category : 10

givenness : uniquely-identifiable





10

[

SCHEMA (Ball)

game : 11

]

11





SCHEMA (Game)
players :

equipment : 10





(a.)











SCHEMA (SPG)
source : 12

path :

goal : 13

trajector : 15















SCHEMA (TrajLandmark)
trajector : 15

landmark : 16









SCHEMA (Referent)
category : 16

givenness : uniquely-identifiable





16









SCHEMA (BasketballBasket)
interior : 13

exterior : 12

game : 14









14





SCHEMA (Basketball-Game)
players :

equipment : 16





(b.)

Figure 12: The semantic structures associated with the
ball in (a.) and into the basket in (b.). The Referent
schema in (a.) is the meaning of the whole referring ex-
pression, and the SPG in (b.) is the meaning of the spatial
phrase.



it would also generate an alternative analysis correspond-
ing to the correct scenario, but it would have not way of
preferring one over the other13.

4 Applications

The constructional analyzer is currently being put to use
in two tasks that require the deep semantics that it pro-
vides.The first task is that of Simulation-Based Language
Understanding (Narayanan, 1997), and the second is the
task of inductive learning of constructions (Chang and
Maia, 2001).

4.1 Simulation-Based Language Understanding

Simulation-based language understanding draws infer-
ences about actions and events by executing an active
model of actions and events. The active models are called
x-schemas (short for executing schemas) which are exten-
sions to stochastic petri nets. In order to draw inferences
about an action like walking, the system performs a sim-
ulation by executing its internal model of walking.

To tailor the inference to a particular scenario, the sim-
ulator needs to set the parameters of the x-schema rep-
resentation appropriately. These parameters are the free
variables that control how the simulation executes. For
example, the walking x-schema would have parameters
for who the walker is and for the path (or direction) of
motion. So in the sentence Harry walked into the cafe,
the walker would be Harry and the path would be into
the cafe.

But before a language understanding system can uti-
lize the virtues of such a model, the parameters must be
extracted from the utterance. This is where the construc-
tional analyzer comes in. If the constructions have fea-
tures designed to interact with the simulator, each con-
structional analysis will provide the parameters to the
simulation, and the analyzer and simulator will interact
to understand the utterance.

At the time of this writing, researchers are working
to integrate the constructional analyzer with a simulation
engine. Once coupled, the constructional analyzer and
simulation engine will be a unique and powerful method
for language understanding. Such a system would even
be able to do “exotic” metaphorical inference with ease,
since metaphorical inference is just a special kind of pa-
rameterization.

ties.
13A similar situation happens for an entity trying to learn lan-

guage. First it would consider both possibilities, but it would
have the ability to rule one out given the observation of the ac-
tual scenario. Unfortunately, the analyzer does not have access
to the scenario that the utterance is describing. See (Chang and
Maia, 2001) for a discussion of a language learning algorithm
that does have access to the scenario.

4.2 Child Language Learning

The language learning model used by Chang (Chang and
Maia, 2001) is a comprehension-based model of language
learning built on the following assumptions:

• There is significant prior knowledge going into the
learning process.

• The learning is incremental and based on experi-
ence.

• The learning is tied to language use. i.e. Frequency
of language data affects the learning.

The model analyzes the incoming utterance using the
current set of constructions that have been learned. If
the current analysis generated by the constructional an-
alyzer cannot explain all of the semantic content found
in the current scenario associated with the utterance, the
model hypothesizes new constructions. This hypothesis
process pairs up the unused form relations with the miss-
ing semantic relations to produce constructions that fill
in the semantic/pragmatic gap. Since the hypothesis pro-
cess is under-constrained, the model generates multiple
constructions in an attempt to explain the same missing
semantic content. The more useful of these constructions
in later analyses are the ones that get reinforced while the
others wither away.

This model of learning depends on the language an-
alyzer to initially try and explain the semantics of the
scene. But for such an analyzer to be useful it needs
to be semantically focused. It also needs to be capa-
ble of incremental analysis as well as tolerant of noise
and missing constructions. These requirements line up
perfectly with the constructional analyzer’s virtues pri-
marily because the language learning task heavily influ-
enced the design of the constructional analyzer. In effect,
the constructional analyzer was built on the assumption
that all grammars, not just grammars in the process of
being learned, will lack coverage when faced with real
language.

5 Conclusion

This report describes the constructional analyzer, an im-
plemented analysis system for producing constructional
analyses. Such a system is important not only because
it is the first implemented analyzer of a formalized con-
struction grammar, but also because of its broader impli-
cations on computational linguistics.

One of the most striking ways this work differs from
other approaches is its reliance on knowledge. In other
words, the constructional analyzer produces relational
structures. This goes against the currently in fashion
practice of producing extremely limited, but statistically



well-motivated structures. Ideally, the statistical moti-
vation should go hand in hand with relational structure,
providing the best of both worlds. This work takes those
initial steps back toward knowledge, making possible the
transition to robust probabilistic relational models14.

Beyond the knowledge based approach, another sepa-
rate question emerges, that of which knowledge should be
represented. This work describes an approach using em-
bodied semantics. Thus this work is important because
it provides computational underpinning for a vast body
of work in cognitive science, finally making it possible to
show the advantages of such an approach using real appli-
cations. Two important applications are grammar learn-
ing and simulation-based understanding, both of which
could change the way people build language understand-
ing systems.

The final implication of this work is that it is arguably
more scalable and robust than other constraint-based sys-
tems like HPSG (Pollard and Sag, 1994). The reasons
for this are the combination of using a constructional ap-
proach to language analysis, using the deep embodied
semantics as the semantic substrate, and then leveraging
that semantics using metrics like semantic density. Con-
structions make the system more scalable and robust be-
cause they free the grammar from having to deal with
everything lexically. The deep semantics provides scal-
ability because of the clear interfaces between the an-
alyzer and the simulation engine. Furthermore, having
access to the semantics not only rules out semantically
malformed analyses, but also provides means for choos-
ing the heuristically best analyses. Both of these make
the system scale better and provide robustness in the face
of unanticipated language.

References

Steven Abney. 1996. Partial parsing via finite-state cas-
cades. In Proceedings of the ESSLLI ’96 Robust Pars-
ing Workshop.

Benjamin Bergen and Nancy Chang. 2002. Embodied
construction grammar in simulation-based language
understanding. Technical Report TR-02-004, ICSI. To
appear in Oestman and Reid, eds., Construction Gram-
mar(s): Cognitive and Cross Lingusitic Dimensions.
John Benjamins.

John Bryant. 2003. Constructional analysis. Master’s
thesis, UC Berkeley.

Nancy Chang and Tiago Maia. 2001. Learning grammat-
ical constructions. In Proceedings of the Conference of
the Cognitive Science Society.

14See (Pfeffer, 1999) for a description of such models.

Charles Fillmore. 1982. Frame semantics. In Linguis-
tics in the Morning Calm, pages 111–138. Linguistics
Society of Korea.

Adele Goldberg. 1995. Constructions: A Construction
Grammar Approach to Argument Structure. University
of Chicago Press.

Jerry Hobbs, Douglas Appelt, John Bear, David Israel,
Megumi Kameyama, Mark Stickel, and Mabry Tyson.
1996. Fastus: A cascaded finite-state transducer for
extracting information from natural-language text. In
Roches and Schabes, editors, Finite State Devices for
Natural Language Processing. MIT Press.

George Lakoff. 1987. Women, Fire, and Dangerous
Things. University of Chicago Press.

Srini Narayanan. 1997. Knowledge-Based Action Rep-
resentations for Metaphor and Aspect. Ph.D. thesis,
University of California at Berkeley.

Avi Pfeffer. 1999. Probabilistic Reasoning for Complex
Systems. Ph.D. thesis, Stanford University.

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.







SCHEMA (Referent)
category : 3

givenness : uniquely-identifiable



 2





SCHEMA (Basketball-Game)
players : 3

equipment : 10 , 16





3

[

SCHEMA (Player)

game : 2

]

7























SCHEMA (Throw-Action)
thrower : 3

executor : 3

throwee : 4

patient : 4

path : 5

fly : 6

cms : 8























8























SCHEMA (Caused-Motion-Scene)
patient : 4

agent : 3

action : 7

result-motion : 6

path : 5

a (Apply-Force) : 7

c (Cause-Effect) : 9























9





SCHEMA (Cause-Effect)
cause : 7

effect : 6



 6





SCHEMA (Fly)
path : 5

executor : 4









SCHEMA (Referent)
category : 4

givenness : uniquely-identifiable



 4

[

SCHEMA (Ball)

game : 2

]

5











SCHEMA (SPG)
source : 12

path :

goal : 13

trajector : 4















SCHEMA (TrajLandmark)
trajector : 4

landmark : 16









SCHEMA (Referent)
category : 16

givenness : uniquely-identifiable



 16









SCHEMA (BasketballBasket)
interior : 13

exterior : 12

game : 2









Figure 13: The collection of schemas belonging to constituents spanning The basketball player threw the ball into the
basket but before the Caused-Motion construction is activated, except now evoked structures have been merged.


