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Abstract
We present a new algorithm for unfolding planar polyg- . ]
onal linkages without self-intersection based on following
the gradient flow of a “repulsive” energy function. This /
algorithm has several advantages over previous methods. ]
(1) The output motion is represented explicitly and exactly as

(b)

a piecewise-linear curve in angle space. As a consequence,
an exact snapshot of the linkage at any time can be extracted
from the output in strongly polynomial time (on a real RAM

(a)

supporting arithmeticsin, andarcsin). (2) Each linear step

of the motion can be computed exactly@{n?) time on a

real RAM wheren is the number of vertices. (3) We explic-

itly bound the number of linear steps (and hence the running

time) as a polynomial im and the ratio between the maxi-

mum edge length and the initial minimum distance between

a vertex and an edge. (4) Our method is practical and easy to (©) (d)

implement. We provide a publicly accessible Java applet [1]

that implements the algorithm. Figure 1: A sample unfolding of a polygonal arc produced

Keywords: Carpenter's rule problem, linkage reconfiguray, OUr agerithm. By following the gradient of a repulsive

. foldi di fl K 7~ energy function, the linkage evolves from its initial configu-
tion, uniolding, gradient flow, knot energy, computation tion shown in (a), through a series of non-intersecting in-

geometry. termediate configurations represented by (b) and (c), to a fi-
_ nal straight configuration (d). Throughout the motion all seg-
1 Introduction ments preserve their length, but the figure uniformly scales

1.1 Linkage Reconfiguration. Consider a planar linkage®ach configuration to fit in the same image area.

of rigid bars connected at flexible joints to form a collec-

tion of tangled but noncrossing arcs and cycles (polygonal ) ) _ )

chains). The linkage may move in any way that preserves understand how the amino acids quickly and precisely

the bar lengths and causes no two bars to cross. Figure 1 fold into a minimum-energy configuration; and _

shows four frames from an example of such a motion. 4. computer graphics, where the goal in key-frame anima-
tion is to smoothly interpolate between two shapes of

1.2 Motivation. Arc and cycle linkages and their motions ~ @n underlying skeleton (linkage).

arise throughout science and engineering in a variety of |n the past few years, tremendous progress has been

contexts, including made on understanding convexifying motions for arc and
1. robotic-arm folding, where the goal is to fold the arrfycle linkages, specifically in FOCS 2000 [9, 12]. However,
from one configuration to another:; the algorithms behind these motions are relatively complex

2. hydraulic tube bending, where the goal is to manufs2d slow. The goal of this paper is to improve this situation
ture a particular shape out of an initially straight tube;Py Presenting a simple and efficient method for computing

3. protein folding, where the backbone of the protein c&QNvexifying motions of planar arc and cycle linkages.

be modeled as an arc or cycle, and the goal is to . . )
1.3 Existence of Motions.A natural question asks for

. . a characterization of the shapes into which a linkage can
*University of Georgiacantarel@math.uga.edu . . .
TMassachusetts Institute of Technologglemaine@mit.edu fold. The most fundamental_ version of this question asks
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is equivalent to whether the arcs can be straightened avitere L is the maximum edge length (dr whichever is
the cycles can be convexified. This fundamental questianger) andD is the minimum elliptic distance between a ver-
has been resolved in all cases: every valid configuratiortég and an edge in the initial configuration (grwhichever
reachable for every arc or cycle in 2D [9,12] and in 4D and smaller). (Elliptic distance is defined in Section 3.2.) In
higher dimensions [7], whereas not every configuration particular, if the input vertices are chosen from an integer
reachable for some arcs and cycles in 3D [5, 6]. Intuitivelyy x N grid, then this time bound ipseudopolynomiaihn
4D chains have a “lot of space” (comparing the dimensiotige sense that it is polynomial inand N. This algorithm is
of the configuration space and the barriers preventingalao the first that outputs an explicit, exact representation of
motion), 3D chains can be geometrically “knotted” (but stit motion, in the sense that an exact snapshot of the linkage
topologically trivial), and 2D chains can lexpandeduntil at any time during the motion can be extracted from the out-
they unfold (consequently avoiding crossings). put in strongly polynomial time. Specifically, the motion is
piecewise-linear in angle space. Each linear step in the mo-
1.4 Algorithms. In 4D, we have an essentially ideal situaion can be computed i®(n?) time, whereas previous ap-
tion: there are strongly polynomial-time algorithms to conproaches required linear programming or convex program-
pute a polynomial number of succinctly describable movesng to compute even an infinitesimal motion, which take
(algebraic curves of constant degree) for an arc or cycle [Wakly polynomial time. The running time of the algorithm
(Strongly polynomial timeneans that the running time on as strongly polynomial in theutput siz€n times the number
real RAM is polynomial in the number of vertices in the of steps in the output motion), and we prove that the output
linkage, and independent of the bit complexity of the inpus)ze is polynomial im and the geometric features mentioned
In 3D, it is PSPACE-hard to decide whether a 3D arc can bbove.
folded from one configuration to another [3], though it re- On the practical side, our algorithm is simple and easy
mains open how quickly we can determine whether an aocimplement, involving a straightforward computation of
can be straightened [5]. the gradient of an energy function. We have implemented
In contrast, the algorithmic side remains relatively undéie algorithm as a Java applet [1] and in C++. Our timings
veloped in 2D. The original 2D theorem of [9] is algorithmiindicate that our algorithm runs dramatically faster than an
but requires solving an ordinary differential equation whemaplementation of [9]. (The algorithm of [12] has not been
the right-hand side is defined implicitly by a convex optimplemented to our knowledge.) The algorithm is inspired
mization. This motion is “canonical”, in particular presenby a natural physical process, in which vertices repel edges
ing any symmetries present in the original linkage; it al§and vice versa) as if they all were objects with similar
expands all distances between pairs of vertices. Althouglectrostatic charges.
the algorithm is finite for any specified output error tolerance On the mathematical side, our techniques construct a
(and even output error can likely be avoided), no time bounaisturalC'> unfolding motion. In contrast, the motions of [9]
have been established. The alternative approach of [12] gigesl [12] are piecewis€- and piecewise=>°, respectively.
a motion involving polynomially many algebraic motions o®ur motions are not always expansive, but this seems key to
degreed(n). This motion is expansive and involves conce@chieving our results.
tually simple motions, but does not preserve symmetries in
the linkage. Unfortunately, computing each algebraic motidr6  Overview. The basic idea of our approach is to define
requires exponential time and is accurate only up to a span-energy functioron the configurations of a linkage, satis-
ified error tolerance. Nonetheless, that exponential boundyigg four properties:
the current best time bound on any algorithm for this prob-1.

| expansive motions decrease energy;
em.
2

. the energy is infinite when the linkage crosses itself;

| hi i 3. the energy is minimum when the linkage is in the
1.5 Our Results. In this paper, we introduce a new desired configuration (straight or convex);

energy-driven approach to straightening 2D arcs and CoNVeXr o< two connected components of the linkage grow in

n_‘ymg 2D cycles that_ establishes stronger algorithmic, prac- distance, their interaction energy decreases.
tical, and mathematical results. ) ] i
On the algorithmic side, we obtain the first polynomiallhe first property, together with the existence of expan-

time algorithm for linkage unfolding where the polynomia§iveé motions [9], establishes the existe_nce of motions that
depends om and geometric features of the initial configdecrease energy. We follow the negative gradient flow to
uration? Specifically, the running time i®(n7L25 /D26) find a motion that decreases energy. The second property

implies that this energy-decreasing motion will avoid self-
intersection. The third property along with the existence

Our model of computation is a real RAM supportiag —, x, +, ./, Of energy-decreasing motions implies that we eventually
sin, andarcsin.




reach the desired configuration. The fourth property preventsst beC?, charge, repulsive, and separable. (We can define
multiple components from flying apart from each other soversion of admissibility foco':! functions instead of2,
quickly that they never actually straighten or convexify.  but it is much harder to work with.)

We begin in Section 2 with background and definitions.
Then in Section 3 we define the precise constraints we n@&t.1 Charge. An energy functionE is chargeif it ap-
of an energy function and give examples of such energy fupreachestoo on the boundary oE X (A), that is, if it be-
tions. Section 4 establishes the main mathematical rescitmes infinite as the linkage approaches any self-crossing
that gradient flow produces the desired smooth motion. Seonfiguration.
tion 5 describes the algorithm to find an exact piecewise- This requirementis an adaptation of an idea from the lit-
linear motion and proves that its running time is finite. Seerature of knot energies (cf. [10]) to capture the idea that our
tion 6 gives explicit bounds on the running time in terms @hnergy functional must avoid self-crossing configurations.
n and geometric features of the input. Section 7 describdse inspiration for the name “charge” comes from electro-
experiments with an implementation of our approach, astitics, where it takes an infinite amount of work to pull a
shows the resulting animations and running times. We cquair of point charges together until they coincide.
clude in Section 8

3.1.2 Repulsive.An energy functionZ is repulsiveif it

2 Background: Arc-and-Cycle Sets decreases to first order under any strictly expansive motion

We now define the objects of interest. Aanc-and-cycle of A.

set A is a finite collection of planar polygonal arcs and This requi_rement captures the idea that the vertices and
polygonal closed curves. gonfigurationV = [y, vs, .. ] edges of the linkage should roughly repel each other under
of A is an assignment of coordinates to vertices such 3¢ gradient flow of the energy.

the edge lengths match those ih If A hasn vertices, .

the configuration spacef A, denotedX (A), can be viewed 3:-1.3 Separable.For an arc-and-cycle set with con-

as the algebraic subvariety B2 determined by fixing the nected components,, ..., A,, an energy functiot is sep-
length of each edge. Thembeddeconfigurations ofA— arableif it can be written in the form

configurations without self-crossing—are denoled (A). n

~ Aconfiguration of an arc-and-cycle setdater-convex (3 1) E(A) = Z Eij(As, A),

if each outermost connected-component 4fis either
straight (when it is an arc) or convex (when it is a cycle). A
motion of a configuration istrictly expansivef it does not where eaclwo-component energy;; is an energy function
decrease any vertex-to-vertex distance, and strictly increasgshe arc-and-cycle set; U A ; that itself isC?, repulsive,

all of the vertex-to-vertex distances between pairs of verticgsd charge; and furthermore the contribution/f to the

that are not forced to have constant distance because theyjggglient of £ approaches zero as the distance betwégen
connected by a straight chain of edges or because theyaanAj grows.

on or inside a common convex cycle. A motion is merely This requirement enforces that, as connected compo-
expansivevhen it does not decrease any vertex-vertex digents ofA become far away from each another, the repulsion

,j=1

tance, and increases at least one such distance. between them has little impact on the gradient of the energy.
The main result of [9] establishes the existence of such
motions, which we use extensively: 3.2 Example. We now give an example of an energy

_ . function that obeys our criteria. The basic idea is to sum
THEOREM2.1. Any arc-and-cycle set admits a strictly expowers of reciprocals of distances between vertices and

pansive motion until it is outer-convex. edges of the arc-and-cycle set. This idea immediately leads
_ to the charge property: as a distance approaches zero, the
3 Energy Functions reciprocal approachesco. We use a particular definition

Next we consider energy functions whose minimizatic¥ distance between a vertex and edge so that the energy
forces the linkage to “repel itself”. The gradient of any sudhnction isC>.

function will then define a motion of the linkage towards an  Specifically, theelliptic-distance energpf an arc-and-
outer-convex configuration that avoids crossings as desirgycle setd with vertex set” and edge set is defined by

3.1 Definition and Required Properties. An energy E(A) = Z 1 _
functionis a function from embedded configuratiofis (A) cageoy  u=vlltllu—w]=[o=w[)?
to the nonnegative real numbéts. We call an energy func- vertex ug {v,w}

tion admissibleif it has four properties defined below: it(3.2)
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where the denominator is the squamdtiptic distancebe- or A(t) leaves any compact neighborhood4f0) in finite
tween vertexu and edge{v, w}. For any edggv,w}, the time.
level sets of the summand in the elliptic-distance energy, as BecauseF is repulsive, Theorem 2.1 implies that any
we vary the position of vertex, are a family of ellipses with critical configuration ofA is outer-convex. So in the first
foci atv andw which converge at zero to the edf&,v;}. case there is nothing more to prove.
We focus on the second case. We can sgliinto n

PrRoPOsITIONS.1. Elliptic-distance energy is admissible. sublinkagesi;(t), so that the components of ea¢hremain

within a bounded distance of one another for all time. In this
Proof. This energy isC> on the interior ofEX (A) and is cased; () remains within a compact subspacefk (4;).
therefore als@?. Because the denominator of the Summalwe define a compact Subspace of this space by restricting
vanishes precisely when vertexis on the edgév, w), the our attention to the spacBX * (A;) of configurations with
energy is charge. Any expansive motion cannot increase afly < E(A(0)) + 1. Here we have used separability Bf
of the summands, and it must increase a positive termigwrite £(A) = > Bij(Ai, Aj) where eactE;; is aC?,
at least one of the denominators, while leaving all negat@gbmsive, charge ehergy function hX (4; U A;).
terms alone. Thus the energy is repulsive. Finally, because Now removing ane-neighborhood of the outer-convex
we can split the sum up according to which connectegbnfigurations leaves a subspaSg on which |[VE;;|| is
component ofA the edge(v, w) and the vertex: belong to, pounded below by somé&; > 0, because this removes
while the derivative of the summand approaches zero as gh@eighborhood of the critical configurations fék; (by
distanceg|u — v|| and|lu — w| become large, the energy istheorem 2.1 and becausg; is repulsive).

separable. O Because thed; are drifting further apart, and? is
_ _ separable, for each;; there is some finite time after which
4 Gradient Flow Almost Unfolds Linkages each||VE;;|| < G;/2n. After this point, the gradient flow

This section proves our main mathematical result: for anf E must reduce each;; at rate at least?; /2. But each
e > 0, the negative gradient flow of any admissible er;;(A;(t)) is finite at this point and must always be non-
ergy functional moves any linkage configuration to withinegative, so for alt greater than somg, A,(¢) must be
distance: of an outer-convex configuration in finite time. outsides;.
By definition, the complement &§; consists of config-

4.1 Existence of Gradient Flow. We first observe that theurations withE;; > FE(A;(0)) and configurations within
gradient flow is well-defined: e of an outer-convex configuration. BUE;(A4;(t;)) <

E(A;(0)), so we must be in the second casg(¢) is close
PropPosITION4.1. Given any embedded arc-and-cycle seb an outer-convex configuration far > ¢;. So for any

A, the downhill gradient flowA(¢) of A under any admis- ; - max; t;, A(t) is close to an outer-convex configuration,
sible energy functiorE exists for all timef > 0 and is as completing the proof. O

smooth (int) as the energy functiof’ (in space).
5 Algorithm

cPﬁis section presents an algorithm for computing a
piecewise-linear motion from an initial configuration to an
outer-convex configuration. This path is computed by first

proaches the boundary of this space. But energy approad eégcting a particular admissible energy function, expressing

+o00 along the boundary and energy strictly decreases alé energy function in terms of a suitable parameterization,
the path, so this cannot happen O a then applying Euler integration along the downward gra-

dient path to get a series of “snapshots” of our linkage with
decreasing energy which can be joined by linear interpola-
tion in our parameter space. The algorithm terminates when
THEOREM4.1. If A is an arc-and-cycle-set and is an W€ are sufficiently c_Iose to.an epergy—critipal configuratic_m
admissible energy function ai.X (A), then for anye > 0 to cqmplete the mqtlon by Illnear .|nte.rpolat|on. As shown in
the m0t|0nA(t) defined by the downhill gradient flow &F Section 4, any critical Conf|gurat|0n-|5 guarant_eed to corre-
carries A(0) to within ¢ of an outer-convex configuration inSP0Nnd 0 an outer-convex configuration as desired.

finite time.

Proof. Because energy only decreases under gradient fl
we can restrict to the closed subspde& *(A) of EX(A)

whereE < E(A) + 1. Because® is C?, the integral curve
V(t) of —VE through A exists for all time, unless it ap-

4.2 Main Theorem. We now prove our main theorem:

5.1 Parameterizing the Configuration Space of an Arc.
Proof. A standard result in dynamical systems says that 2 start by considering the case whehconsists of a

trajectory of the negative gradient flo(t) either weakly Single arc ofn — 1 edges. Refer to Figure 2(a). Let
converges to some configuration dfthat is critical forE vV = [v1,v2, ..., vy] denote the positions of the vertices



(a) Open chain. (b) Closed chain. (c) Forcing closure in a closed chain.

Figure 2: Parameterization of chains in terms of angles.

and lete; denote the edge between vertiegs, andv;. We from the set of independent variables, and determine it in
parameterize the system I8y = [01,65,...,0,_1] where terms of the other independent variablés, 0o, ..., 0, 1)

0; measures the angle between edgand thex axis. The by computing the location of,, as the intersection of the
locations of the other vertices are given by circle of radius/; centered at; with the circle of radiug,

centered at,,_;. We can compute,, with
(5.3) v =wi—1 +¥;[cosb;,sinb;], i€{2,...,n},

where/; is the constant length of the edge andv; is 4, —y+- dl% — b+ 4] + d% G @=5 4
arbitrarily set to the origin. If we wish, we may also assume 2||d|? [d? 4/ df*
9, to be zero. (5.6)

The major virtue of this parameterization is that it iwhered = v,_, — v and-* denotes rotation b0 de-
exact: any set of parameter values corresponds preciselg@es. Because, andv,_; are not co-located (no self-
a linkage configuration inX(A), and linear interpolation intersections), there will be zero, one, or two real solutions
between two “snapshot” positions in angle space yieldd v, depending on whethefv; — v,,—1]| is greater than,

one-parameter family of exact linkage configurations joinirgfiual to, or less thaéy + £,. When there are two possible

snapshots. solutions, one will cause,, to be a convex vertex, and the
We can define a norm of the angle parameterization@ger will causev,, to be reflex.
follows. If ©" = [¢},...,6!,_,], then We arrange for there always to be two solutions and
choose among those solutions by the following procedure.
(5.4) |0 — 0| = Zmin{wi — 0,2 — |6; — 01} At the initial configurationA,, we let v, be the vertex

of maximum absolute turn angle, and use this to define
an angle-space parameterizati®g. Now any closedn-
This norm is different from the norm ol (A) as a subvari- sided polygon has a vertex whose absolute turn angle is
ety of R*": a small angular move is magnified by the lengtat least27/n, so we may assume the absolute turn angle
of the edge it turns. However, we can relate the two normsats,, is at least2n/n. If the polygon has minimum edge
follows. Letl,,.x be the maximum edge lengtiax; ¢;. Let length/,,,, a calculation reveals that, remains convex or
V' = [v],vs,...,v,] denote the point parameterization ofeflex in all configurationd”” with ||Vy — V’|| < 20min/n
the configuration represented by angle parameteriz&ion (in the vertex-space norm). So if the next angle-space
Then position isOy, and || — O1]] < 2lmin/(n3lmax), then
(5.5) [V = V|| < n%lmax|© — O] by Equation 5.5 there will still be two real solutions for
v, and maintaining the convex/reflexnesswaf will let us
5.2 Parameterizing Cycles.For cycles, the situation isinterpolate continuously betweé&y and©;. Then inO(n)
more complicated: we must change our parameterizatiortitoe we choose a new angle-space parameterizatidn eb
ensure that the length of the closing edge= {v;,v,} thatwv, is again the vertex of maximum absolute turn angle
is preserved. Refer to Figure 2(b)-2(c). We reméye in A; and continue. Iterating this procedure yields a well-



defined angle-space parameterization for any snapdhot streamline, and the two only converge as the step-size ap-

and retains the property that linear interpolation betweproaches zero. Regardless of how well the discrete path

these angle space positions yields a one-parameter famigtches the streamline, it is constructed so that is still ar-

of exact linkage configurations joining snapshots, as longrags at an outer-convex configuration in a bounded number

the vertex-space distance between successive configuratafrsteps.

remains less tha®¥,,;, /n. Our primary goal is to choose our steps so thé®,) —
E(©;+1) > AE > 0 for some AE. Once we can

5.3 Computing the Gradient of Energy at a Configura- establish such a bound on energy decrease, our algorithm

tion. Simple inspection shows that the elliptic energy funevill terminate after at most'(0,)/AFE steps because the

tion requires computin@(n?) terms. Nave computation of energy is initially£(©,) and is always nonnegative.

the gradient in angle space for an arc would require com- As in the proof of the main theorem, we can restrict

puting the derivative of thos&(n?) terms with respect to our attention to embedded configuratighs whose energy

each of theD(n) parameterization variables, for a total coss at mostE(©,) and whose distance to an outer-convex

O(n3). However, there are many common subexpressiamnfiguration is at leasb, /(n2/y,.x). Such configurations

and after some algebraic manipulation the total work to cofit’m a compact subset of EX(A). BecauseVE can

pute the gradient can be reduced(m?). (We omit the de- vanish only on outer-convex configurations, by compactness

tails.) For closed cycles, the contributionéfis distributed there are positive constar@andC so that||VE|| > G and

to the rest of® by applying the chain rule to Equations 5.3V2E|| < C.

and 5.6. Define®,1; = ©;, — At - VE(0,)/||VE(©;,)||. Then

we can expand’(©;,1) using Taylor's Theorem arourtl;:
5.4 Picking Step Size to Avoid Self-IntersectionBefore

we can generate snapshots by following the gradient, we E(O©i41) = E(8:) — At[[VE(S)]

must show that we can choose step sizes to ensure that + =(

we can linearly interpolate between snapshot configurations

while avoiding self-intersections. Suppose our initial cofer some0 < (At)* < At and whereu is the unit vector

figuration has energy.. Because the energy functional is-VE(©;)/||[VE(©,)|. If At < G/C, then the first-order

charge, the Euclidean distance between the compact seteoh is at least twice the second-order term, so the decrease

configurations with energy E and the compact set of nonin energyAE is at least{ At)(G/2).

embedded configurations of is strictly larger than some We now have three a priori upper bounds dt:

D, > 0. By Equation 5.5, we obtain a corresponding di€?,,in /(7 lmax ), Ds/(n*€max), andG/C. The minimumtJ

tance bound), /(n?/1,.x) > 0 in angle space. (In Section 6of all three of these bounds is the largest allowed step size.

we explicitly compute these bounds for elliptic-distance en- A basic form of our algorithm is as follows:

ergy.) . L 1. SetAt := U, k := 0, and©, to the angle parameteri-
We use two consequences of this fact. First, if the en- zation of A.

ergy decreases monotonically on the sequence of snapshoP Until ©,, leavess:

0;, and the distance between successive snapshosnd

At)?V2E(0; — (At)*VE)(u,u).

N | =

©,41 is less thanD, /(n%/1.y), then the path of exact con- (2) Compute the gradietE atOy.
figurations interpolating between the snapshots avoids self- (0) SetO11 := O, — At - VE(O)/[|VE(Oy)||
intersection. Second, if any snapshot is withlg/ (n2(yax ) (c) Inthe output motion, linearly interpolate fro@y,
of an outer-convex configuration, then the algorithm may ter- 10 Op41. o
minate: we can move to the outer-convex configuration by ~ (d) Recompute the angle-space parameterization so
linear interpolation and this motion avoids self-intersection. thatv,, has maximum absolute turn angle.

3. Inthe output motion, linearly interpolate frofy, to the
5.5 Generating Snapshot ConfigurationsBy Theo- closest outer-convex configuration.

rem 4.1, the negative gradient flow of any admissible energy

moves every arc-and-cycle set to an outer-convex configura- The discussion above and our choic proves that
. y Y . . . . g%e motion avoids self-intersection and that the algorithm
tion. We now demonstrate a discretized version of this ﬂotveyrminates after at mogtZ(0y) / (GAL) steps

0 .

which generates a piecewise Iilnear PER O, ..., O 10 In practice, this gradient descent can be implemented
an outer-convex configuration in a bounded number of steps. o e
. : . : many more efficient ways, although it is difficult to ob-
We generate this path by using Euler integration to trace {he A
o ; ! ain stronger worst-case bounds. For example, instead of
streamline in the gradient field downward fro@y. Be- . ; . D
. . . o moving at a distancé\¢ along the gradient direction, we
cause Euler integration will accumulate positional error as : .
can perform binary search arourid to find the At <

it advances, our path may diverge substantially from the tI’ILIJSn [Lonin /(02 0mas), Dy /(0% } that decreases energy



the most (steepest descent). This approach is taken by our Because each term in the sum is nonnegative, we know
implementations. Although it is easy to show that the nurtivat some term in the sum, sayk, is at least the average.
ber of steps is no more than the straightforward algorithifhe number of terms is at most. Thus
the worst-case bound remains the same. Another more so- dllos 30,
phisticated approach, conjugate gradient, likely converqw)w > Mma
even faster, but we have not yet experimented with it. We dt t=0 666 103 .

note that by the analysis above, any method of choosing steps Now we consider the first-order change in energy under

which decreases energy and respects the step-size boydsyqtion, Because the motion is expansive, no term in
required for valid linear interpolation is an unfolding algo,e energy function increases. Thus the absolute first-order
rithm. change in energy is at least the absolute first-order change in
aterminvolving||v; —v||. Suppos€v;, v;} is a barincident

6 Bound on Number of Steps to v, but notwy. (If such a bar does not exist; is an end of

In this section we give explicit bounds on the number @f chain andy, is its neighbor; we interchange the labels of

steps taken by the algorithm described in the previous sectigrandv,, and then such a bar exists.) Then we have
for elliptic-distance energy on an arc or cycle linkage. Our
bound is in terms of the following geometric parameters off < d(llvk, = vill + llog = vsll = 4iz) >

d'Ui
dt

t=0

the configuratior®;: dt |,_o ~ dt ‘=0
1. lnax: Maximum edge lengthpax; ¢;.
2. dmin(©;): minimum elliptic distance between a vertex d|jvg — vi| d||lvg — vy dl;;
al"hd) an edgenin, ; ([|vi — vl +[lvi — vl +[lvj-1 = B |y d |, dt |,
'Uj .
3. w(©;): width of the linkage, i.e., the minimum width 20 Ea. 6.7 =0
of a strip, bounded by two parallel lines, that contains (=2) - (low = vill + [Joe — vy — €i;) 72
the linkage. —w?(0;) dv,,
smax || —— ,
We also define more convenient forms of these pa- 33303, n0d3,, (©;)  mo || dt ||,
rameters: L(0;) = max{l,{n.x(©;)} and D(0;) = ) ) o
min{1, duin (©;)}- wheredn.x(©;) is the maximum elliptic distance between a
o vertex and an edge i®,. We can upper bound elliptic dis-
THEOREM®6.1. tances in terms of vertex-vertex distances using the triangle
IVE©3)] 2 duin(©:)w?(€:)/(5328n245,,..). inequality:
Proof. Recall that||[VE(©;)|| is the rate at which the (6.8) o = vill + e = vjll = &3y
energy E decreases under normalized gradient motion < llow = will + llow = oill + [lvi = vjll = &

—VE(©,)/|IVE(©;)||. We bound this quantity by first = 2||vk, — vi|.

proving a lower bound on the energy decrease under any nor- . . . i

malized expansive infinitesimal motion. Then the result fol1US: dmax(©;) is at most twice the maximum distance

lows because the normalized gradient motion must decre3gveen two vertices, which was earlier observed to be at

energy to the first order faster than any other normalized nfBOSt7max. HeNC&wax (0:) < 2nlmax.

tion. Next we boundmax,, ||dv,,/dt||,_,. Because the ex-
Consider a normalized expansive infinitesimal motid#@nsive motion is normalized,,, ||dv,,,/dt||;_, = 1, so

defined at timet = 0 that fixes the edge; = {v1,v2}. max,, Hdvm/dtHf:O > 1/n. Hencemax,, ||dvy, /dt||,_, >

Observe that the diameter of the arc or cycle linkage, i.e., the/n.

maximum distance between two vertices, is at mdst, .. Combining all bounds, we obtain that

Then [8, Lemma 15] tells us that )

el —w’())

dt |,_, = 2664n85¢8

max vi < 666 (nfma,()g Z ks — el ’ o
‘ t=0 w(©i) gk dt t=0 As described above, this bound on energy decrease
holds also of the normalized gradient motion over point
e, space—~VE(V)/||VE(V)]. To convert this derivative from
3 point space to angle space, we use the chain rule twice—once
Z df|v; — v > Y (©:) max‘ dv _ to convert from vertex spacgé = [vy,vs,...,v,] to real-
oy dt t=0 666305 i || dt |l vertex spacéV = [v1, v, ...,v,_1], and again to convert



from real-vertex spacl’ to angle space: Proof. By Lemma 6.2, the minimum elliptic distance be-
tween a vertex and an edge @ is at leastd,,;, (0g)/n?.
OE _ oE ) oV ) ow Now for any ellipse with foce; andes, the closest points on
00 9V oW 9O the ellipse to the line segment joining the foci are the end-

he fi is wh | points of the major axis. But at these points, this distance is
The first termdE/0V is what we already boundedy,,if of the elliptic distance. Thus the minimum (Euclidean)

dE/dt],_q. distance between an inci
= . . - y vertex ©f and any edge not inci-
The second terr@V/OW is a Jacobian providing ascaleUlent to that vertex iglmn(9o)/(2n%), and some vertex of

factor between vertex spadé and real-vertex spac. g m st move at least this far to cause a self-intersection.

The 2(n — 1) x 2(n — 1) submatrix[0v;/0v;]; j<n iS an

identity matrix. The rest of the Jacobian is just two additiongEmma 6.4. For any configuration ©; whose angle-

columns which can only increase the scale factors. space distance to an outer-convex configuration is
The third termZ{’ is a Jacobian providing a scale factogt least D, /(n%(max), the width w(©;) is at least

between point space and angle space. Each @gfrys a 2d%..(0:)/(nlmax)-

min
vector whose length matches the bar controlled by afigle ) ) .
Proof. First we argue that some vertex in the linkage has

Thus, eachy;: is at least,;y, the length of the shortest bar. bsolute t e bounded frm If the link
L7 absolute turn angle bounded away frar e linkage
By Equation 6.8/iin > 2 dmin(0;). g y 9

contains a cycle, then at least one vertekas absolute turn
Thus,0E/00© > %dmi“(@i)(aE/av) and the theorem angleT at Ie);sQw/n. If the linkage consists only of arcs,
follows. let T be the maximum absolute turn angle of all vertices
(excluding endpoints of arcs). The linkage has angular
distance at mosi'n? from an outer-convex configuration,
because the absolute andglg of each edges; needs to

) ) i rotate at mostl'n to reach the same angle as the first
The proof of this bound is essentially a much MOgige in that arc (and hence straighten). Herite? >

tedious computation along the lines of Theorem 6.1. O@ﬁs/(nggmax)_ Thus, the absolute turn angle at some vertex
of the main challenges is that the relati@i/0W between "o 4t jeastD /(n50max). Therefore, in either case, we

vertex spacé’ and real-vertex space” must be bounded paye 5 vertexs; whose absolute turn anglE is at least
above. We omit the details from this abstract. min{27/n, Dy /(1% max) }-
These bounds are almost all we need. However, we ~gndider the two neighbors,_; andv;,, of v; that

are interested in the values df,;, andw at the initial o0 the angle at,. The width of the linkage is at least

configuration©o, dumin(©o) and w(Oy), not their values e \yidth of the triangle formed by these three vertices
at some intermediate configuratid®,. Fortunately, we Vi1, 3, vis1, which in turn is at least twice the in-radius of

can bound the change of these parametefi, (d0es not e iangle. The in-radius of the triangle is the area divided

change.) by half the perimeter. The perimeter is at mdgf, ... It
o ] remains to prove a lower bound on the area of the triangle.
ITEMMA. 6.1. The elliptic-distance energy of any configura- ¢ 1 < /2, then the interior angle ai, is between
tion ©; is at mostn? /duwin (). 7/2 and7 — 27/n. Suppose among;_; and v, that
) o v;+1 has the larger interior angle in the triangle. Then the
Proof. The energy of anyo; is at most the initial energy iyierior angled of v, is betweenr/n andr/2. Because
E(©y). There are at most? terms in the energy expression < 7/2, sin@ > 20/r > 2/n. The altitude fromy; is
E(©), and each term is at MOt din(Oo). O v — vigr || sin® > 20min/n > dmin/n by Equation 6.8.
] ] The base of this altitude i§v;—1 — viy1|| > dmin/2 by
LEMMA 6.2. For any configuration ©;, dmin(©i) > Equation 6.8. Thus the area is at led&t. /(2n) in this case.
dmin(©0)/n?. If T > /2, then the altitude of one of the other vertices,
saywv;_1, is inside the triangle. Hence the altitude from ;
Proof. By Lemma 6.1,5(0;) < n*/dmin(69). Hence the s also the Euclidean distance between vertex and edge
maximum term ink(6;) is at mostn®/dwin (o), so the f4, 4..,1. By Lemma 6.3, this distance is at led3f. The
minimum elliptic distance between a vertex and an edgeygse of this altitude 041 — vil| > Lomin > dmin/2 DY
©; is at leastdi, (9) /n”. O Equation 6.8. Thus the area is at leBStl,;, /2 in this case.
Hence in either case the area of the triangle is at
LEMMA 6.3. The Euclidean distance between any Conﬁgwastmin{Ds,dmin(Gi)}dmin(Gi)/(Qn). By Lemmas 6.2
ration ©, and any self-intersecting configuration is at leagind 6.3, this area lower bound equds, (©;)/(2n), con-
Dy = din(©0)/(2n?). cluding the proof. 0

THEOREM®6.2.
IV2E(©;)(u,u)| < 61920 n6L7(®i)/D12(®i).



As described in Section 5.5, the number of steps @gge lengths. To obtain much smaller errors with the CDR
at mostE(0)/(GAt). Using the observation thdd > method would require many more steps, and significantly
dmin(0;) > dwmin(©9)/n?, a computation shows thatmore computation time.
w3dl3 (0)/(5320 - 61920)n3*-5L13 is a lower bound for The time per step is easier to compare, although again
At. Substituting this and our bounds fd(©,) and G this comparison is not necessarily the “right” thing. The
into the boundE(6,)/(GAt), and writingw in terms of primary cost in the CDR method is solving a convex pro-
dmin(©9), n, andL by Lemma 6.4, we arrive at the follow-gram with©(n?) linear constraints, where is the number
ing final bound: of joints. Such a program can be solved up to error toler-
gancee in O(n*/¢) worst-case time by the classic ellipsoid
method [11], or inO(n?/¢) time with high probability by
a new random-sampling method [4]. In contrast, the run-
ning time of the energy method to compute a step depends
guadratically om, and does not depend on any error toler-
ance.

COROLLARY 6.1. The number of steps in our algorithm i
at most1 752484608000 n.™ L?° / D?5(0y).

7 Experiments

7.1 Comparison to CDR. We compared a C++ imple-
mentation of our energy appro&cto an implementation

of [9] based on the CPLEX barrier solver for quadratic prer>  aggitional Examples. To illustrate the scalability of

grqm§,. on two examples of closed chains. The resultinge energy approach, we show some additional examples
animations and running times are shown in Figure 3 and Tayq their performance in Figure 4 and Table 2, respectively.
ble 1, respectively. The running times are measured iMP8fme of these example contain several hundred vertices and

fectly, as described in the caption of Table 1, but in & W@y, ,14 have been prohibitively expensive to run using the
that only favors the CDR method. CDR method.

The comparison in Table 1 is difficult to interpret,
because the methods we are comparing have fundamegtal~qnclusion

differences. At the superficial level, for each example, the h ted " Hicient q
CDR method uses as few as one tenth the number of st%x ave presented a simpler, more €flicient, and more

but the cost for computing each step is several orders 5@?“06“ Vn\}ﬁtlh O?hto un{pld I'|nkagtes|mbacljle up of ares ind
magnitude slower, so that overall the CDR method is mughcies-  vvhiie the motion IS not globally expansive, His
slower than the energy method. But a more careful anal)/éqg“m'zat'on of energy attempts to balance distances and

shows that the energy method is even better. reconfigu_re the Iipkage more ‘organically”, L
In particular, the number of steps are chosen in fundax One interesting question about our motion is to deter-

mentally different ways with the two methods. In the ener ine the shape of the final minimum-energy configuration of

method, we can move conservatively in accordance with gycle. In contrast to [9] or [12], which have unpredictable
' inal configurations, we might expect that our energy method

step bound used in Section 6 or we can use a more aggressi Its i le that best imat I |
numerical method. Regardless of how the steps are chogery'> In a cycle thal best approximates a reguiar polygon,
t is, causes the joints to lie on a common circle. See [2]

the link lengths are preserved exactly. In the CDR meth i its al th i r ) "
however, the steps are approximating a complex motion, pother resulls along these lines. =rom our experments,
3 expectation seems false, but a combination of our en-

small steps are necessary to keep the approximation cl . . . .
P y P PP rgy function with a term involving the area of the polygon

and preserve the edge lengths. Because the CDR im&@y

mentation does not include constraint stabilization, the engy lead to such a result. . . .
For even faster algorithms, an interesting approach

lengths drift, and this drift accumulates over the motion. Thehich we plan to explore is minimizing the energy func

final configurations have more thaq% relative error in the W . - LS
tion with a more sophisticated optimization procedure such

5 . ) i as conjugate gradient. This direction should lead to motions
For historical reasons, our current implementation for closed chains .

uses the open chain parameterization with an algebraic constraints %t involve fewer St_eps and would be faster overall. We ’C_IISO
reprojection to force the last edge to close the cycle. The final versiote that our repulsive energy behaves very much like light
of this paper will feature results computed with an implementation thenergy or gravitational attraction as it radiates. It is quite
uses the parameterization described in Sgction 5.2. We expect _thesg t'm@qy that the same hierarchical multipole methods that have
will actually be faster than the current version because reprojection will BRen used for Iarge-body gravitational simulations, photo-

longer be required. .. . . . .
3The convex objective function in [9] is not exactly quadratic, piealistic rendering, and fast evaluation of radial splines could

CPLEX does not support such objective functions. We use a quadrdl@ used to efficiently solve very large linkage systems as
relaxation of the objective function because it is much faster to compugeell.

in particular because we can then use CPLEX. This relaxation makes the Perhaps the most exciting direction for further research,
running times of [9] only smaller. It is also perhaps a fairer comparisqn{yhich we are actively pursuing, is tliekage refoldingprob-

because the objective function in [9] was not chosen with efficiency inmind, =~ . " . . . .
but rather for convenience in the proof. Tem: given two configurations of a linkage, find the “short-
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Doubled tree® = 50) Teeth @@ = 29)
| Method [| #steps| Time (sec)| Time/step] Error || #steps| Time (sec)| Time/step] Error
CDR 463 5,927.0 12.8010| 0.654% 322 187.6 0.5826 | 14.131%
Energy || 17,219 17.0 0.0009 n/a| 1,610 1.2 0.0007 n/a
| Ratio || 0.026] 348.64] 14,223] nfa]] 0200[ 156.33] 832.29] n/a |

Table 1: Running times for the examples in Figure 3, measured in CPU seconds. Because of CPLEX licensing issues, CDR
running times are on a 930 MHz Pentium I, while Energy running times are on a 3.06 GHz Pentium IV which is approximately
3x faster. CDR running times just measure seconds spent during the CPLEX barrier optimizer for quadratic programs, which
ignores the (relatively short) time to prepare the input to CPLEX. Energy running times measure the entire execution of a
C++ program. Our C++ implementation runs about 6 times faster than our Java implementation which is accessible on the

Internet [1].

Energy method
| Example || #steps] Time (sec)| Time/step
Spiral ( = 34) 4,740 2.6] 0.0005
Tentacle & = 380) || 2,196 2225 0.1013
Spider (@ = 380) 551 747| 0.1356

Table 2: Running times for the C++ implementation of the en-
ergy method, applied to the examples in Figure 4, measured
in CPU seconds on a 3.06 GHz Pentium IV.

(4]

the 19th ACM Symposium on Computational Geom&an
Diego, California, June 2003. To appear.

Dimitris Bertsimas and Santosh Vempala. Solving convex
programs by random walks. IRroceedings of the 34rd
ACM Symposium on the Theory of Computipgges 109—
115, 2002.

[5] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw,

J. O'Rourke, M. Overmars, S. Robbins, I. Streinu, G. Tou-
ssaint, and S. Whitesides. Locked and unlocked polygonal
chains in three dimensiondDiscrete & Computational Ge-
ometry 26(3):283-287, October 2001. .

est” motion connecting them. This problem is important ing] jason Cantarella and Heather Johnston. Nontrivial embed-

several of the applications mentioned in the introduction,

in-

cluding key-frame animation and robotic-arm folding. We
believe that our approaches apply to this problem as well{]

by defining an energy function on the space of motions

in-

stead of the space of configurations, and following the gra-

dient of the motion to produce the shortest motion, forminé8

a geodesic in the space of motions. Details will appear in a

forthcoming paper.

Acknowledgments

9]

We thank Robert Connelly, Alan Edelman, Jeff Erickson,
Rob Ghrist, lleana Streinu, and Jonathan Shewchuk for help-

ful discussions. Cantarella was supported in part by the

tional Science Foundation under grant DMS-02-04862. [

Na-

and O’Brien were supported in part by NSF CCR-0204377,
State of California MICRO 02-055, and by generous sup-

port from Pixar Animation Studios, Intel Corporation, Son 1]

Computer Entertainment America, and the Okawa Founda-

tion.

References

[1] http:/lwww.cs.berkeley.edu/"job/
Projects/Unfold/

(12]

[2] Aaron Abrams, Jason Cantarella, Joseph H.G. Fu, Moham-
mad Ghomi, and Ralph Howard. Circles minimize most knot

energies.Topology 42(2):381-394, 2002.

[3] Helmut Alt, Christian Knauer, Guenter Rote, and Sue White-

sides. The complexity of (un)folding. IRroceedings of

] Robert Connelly,

dings of polygonal intervals and unknotsdrspace.Journal

of Knot Theory and Its Ramifications(8):1027-1039, 1998.
Roxana Cocan and Joseph O’Rourke. Polygonal chains
cannot lock in 4D. Discrete & Computational Geometry
20(3):105-129, November 2001.

Erik D. Demaine, and UBter Rote.
Straightening polygonal arcs and convexifying polygonal cy-
cles. Technical Report B 02-02, Fachbereich Mathematik
und Informatik, Serie B - Informatik, Freie UniveraitBerlin,
February 2002.

Robert Connelly, Erik D. Demaine, and UBter Rote.
Straightening polygonal arcs and convexifying polygonal cy-
cles. Discrete & Computational Geometr0(2):205—-239,
September 2003.

Yuanan Diao, Claus Ernst, and E.J. Janse Van Rensburg.
Properties of knot energies. [fopology and Geometry

in polymer science (Minneapolis, MN 199¢)ages 37—-47.
Springer, New York, 1998.

Martin Grotschel, Laszlo Lo&sz, and Alexander Schrijver.
Geometric Algorithms and Combinatorial Optimizatjaol-

ume 2 ofAlgorithms and Combinatorics Springer-Verlag,
Berlin Heidelberg, 1988. 2nd edition 1994.

lleana Streinu. A combinatorial approach to planar non-
colliding robot arm motion planning. IRroceedings of the
41st Annual Symposium on Foundations of Computer Science
pages 443-453, Redondo Beach, California, November 2000.



] Y 5 e O

(a) Teeth with energy method.
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(b) Teeth with CDR method.
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(c) Doubled tree with energy method.
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(d) Doubled tree with CDR method.

Figure 3: A comparison of convexification by our method and by CDR. To maximize visibility, the animation zooms as time
proceeds; in fact, all edge lengths remain constant.
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(a) A spiral open chain.

L@@

b) Tentacle.
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(c) Spider.
Figure 4: Other examples of straightening and convexification computed with our method. To maximize visibility, the animation
zooms as time proceeds; in fact, all edge lengths remain constant.




