
A Peripheral Display Toolkit
Tara Matthews1, Tye Rattenbury1, Scott Carter1, Anind K. Dey2 and Jennifer Mankoff1

 1EECS Department
UC Berkeley

Berkeley, CA 94720-1770, USA
ambient@guir.berkeley.edu

2Intel-Berkeley Research Lab
2150 Shattuck Ave, Suite 1300

Berkeley, CA 94704, USA
anind@intel-research.net

ABSTRACT
Traditionally, computer interfaces have been confined to
conventional displays and focused activities. However, as
displays become embedded throughout our environment
and daily lives, increasing numbers of them must operate
on the periphery of our attention. Peripheral displays,
ubiquitous computing devices that present information
without demanding attention, are difficult to build,
particularly because they must dynamically manage the
cognitive load they place on users. We present a toolkit that
aids the development of peripheral displays. We determined
three key issues for the toolkit, based on a survey of
existing peripheral displays and cognitive science literature:
abstraction of data, selection of notification levels, and
transitions between notification levels. Our contribution is
the investigation of these key characteristics, combined
with a toolkit that encapsulates them and supports the
design of displays that focus on these issues. We describe
our toolkit architecture, and present five sample peripheral
displays demonstrating our toolkit’s capabilities.

KEYWORDS: Toolkits, ambient and peripheral displays

INTRODUCTION
Traditionally, computer interfaces have been confined to
task-focused, desktop computing activities. This puts a
large amount of information on a single computer screen,
demanding a person’s full attention. Increasingly, however,
computer interfaces are moving towards a more diverse
assortment of computerized devices that have many
different forms of input and output [24]. These devices,
referred to as ubiquitous computing devices, are meant to
integrate seamlessly into the world and almost disappear
[34]. However, the goal of making technology invisible has
yet to be accomplished.

We present a toolkit to support the creation of applications
within a subset of ubiquitous computing, called peripheral
displays. Peripheral displays are ubiquitous computing
devices that give information to a user without demanding
their full attention. This allows a person to be aware of
more information without being overburdened by it [33].

Peripheral displays “require minimal attention and
cognitive effort and are thus more easily integrated into a
persistent physical space” [1].

What does a typical peripheral display look like? It may be
physical, audible, or simply displayed on a monitor. Direct
interaction occurs rarely, if at all, with peripheral displays.
Its data source is predominantly of low to medium
importance and is continually changing. A user generally
wishes to monitor this data peripherally while performing a
separate primary task. She may wish to be notified when
more important data arrives.

As an example of a physical peripheral display, consider
the bus arrival display shown in Figure 1. Each column of
LEDs indicates the distance of a bus line from the nearest
bus stop, based on data published by the bus company. The
LEDs can flash brightly to notify the user when a bus is
close. Otherwise, they turn on one by one, indicating
distance (more LEDS implies proximity) without grabbing
the user’s attention.

It is difficult to build such a display for several reasons.
First, they are often physically-based and distributed,
requiring hardware and networking, as well as software
skills, and cannot be built using the tools available to
traditional interface designers. These issues have been
partially addressed in recent years by tools such as Phidgets
[6] and iStuff [2]. Second, the key characteristics of
peripheral displays (discussed in detail later in the paper),
such as the selection of notification levels representing the
importance of information, and the development of varied
transitions for capturing different levels of attention, must
be dealt with in an ad-hoc manner.

We believe there is a need for tools supporting the creation
of peripheral displays. To address this need, we have
designed and implemented the Peripheral Displays Toolkit

Figure 1: A display of bus arrival information.

SUBMITTED TO UIST 2003

Page 1 of 10

(PTK). The PTK provides architectural support for key
features of peripheral displays, allowing designers to more
easily prototype them and supporting reuse of code.

Our architecture adds support for three key characteristics
of peripheral displays: abstraction, notification, and
transitions. Abstraction is used to transform incoming data
to meet the needs of the output device. A designer can
indicate the notification level of incoming data. Transitions
are used to update the display, or output (a more neutral
term that includes non-visual displays of information), to
attract an appropriate amount of attention on the basis of
the notification level..

The design of our toolkit is based upon cognitive science
literature and an inspection of existing peripheral displays.
Additionally, we designed it to support issues common to
many ubiquitous computing applications: remotely
distributed applications, the use of physical components,
sensors, and other hardware, and the extreme diversity of
input sources and output devices.

Overview
The next section presents a survey of existing peripheral
displays and literature on attention, justifying the three
issues supported by our toolkit (abstraction, notification,
and transitions). We then present our architecture,
describing how we support each of these issues. We have
built five applications using the toolkit, and they are
presented as illustrations of how the toolkit works. We then
touch on related work in toolkit development, and close
with future work and conclusions.

SURVEY OF PERIPHERAL DISPLAYS AND ATTENTION
Before beginning our survey, we need to define what is
meant by the term “peripheral display.” For our purposes,
peripheral displays are displays that are not at the focus of a
person’s attention. This naturally leads to the question,
what is attention?

To answer this question, we turn to cognitive science
literature. Mack and Rock characterize attention as a
subject's intent and expectation towards a
stimulus [17]. According to recent models of
human attention [28,32,18] and Rensink's
Coherency Theory [30] the brain processes
sensory input hierarchically. Although research
on human attention is still in flux (new categories
and models of attention are still being developed
[15, 30]), one can categorize attention into four
main zones: preattention, inattention, divided
attention, and focused attention (see Figure 2).
Early processing (preattention) handles objects
without any referential frame. These objects are
not inherently available for later processing and
thus do not affect awareness. At the inattention
stage, a person is not conscious of a perceptual
stimulus, but the information may effect behavior
[6]. The nature of inattention is hotly debated,
and no rigorous definition exists. Divided

attention and focused attention represent the two ways that
humans consciously perceive stimuli – by using all
attentional resources to focus on one stimuli, or by
distributing that attention over several objects. According to
Treisman, there is a “continuum between divided and
focused” attention [32], and the sloping graph in Figure 2
reflects this property.

in

We say that a person is aware of a stimulus if it in some
way influences behavior (e.g. percolates beyond the visual
cortex into prefrontal planning). Peripheral displays, then,
are displays that show information that a person is aware
of, but not focused on. This includes inattention and divided
attention, but not pre-attention or focused attention.

We can characterize different categories of peripheral
displays found in the literature based on the degree of
attention they require. Displays with change blind aspects
such as AROMA and the Agentk tickers [21] make use of
inattention. As an example, the Agentk tickers display
changes unnoticeably by fading text. Techniques for change
blind display are described in detail by Intille [12]. Ambient
displays rely on divided attention. They support monitoring
and remain on the periphery of a user’s attention, showing
information of low to medium importance. Alerting
displays, such as our bus arrival display, also rely on
divided attention. They remain on the periphery at most
times, but may grab attention as more important
information arrives. In terms of our graph (Figure 2),
ambient displays might be defined as those that are
"minimally attended" (e.g. just salient enough for conscious
perception) while alerting displays are "maximally divided"
(e.g. slightly less salient than focal tasks).

Characteristics of Peripheral Displays
We have combined our understanding of cognitive science
with a survey of existing peripheral displays in order to
identify the key characteristics of peripheral displays that a
toolkit should support. Though we can identify key features
of peripheral displays, there are few evaluations of
peripheral displays (due to the difficulty of creating such

x = attention 100%0%

y = awareness
direct cognitive direct cognitive

influence

divided attention

focused
attention

pre-
attention

setting (layout, color, objects, names)
inattention

conscious perception (x > 0)

change blind

ambient

alerting
influence

gure 2: Graph of human awareness vs. attention.

Fi

Page 2 of 10

displays) upon which to base an understanding of how they
impact attention [20]. It is for this reason that we turn to
cognitive science literature as additional support for the key
characteristics we have identified. Our survey showed that
peripheral displays have three common characteristics.
These are: abstraction, notification, and transitions. This
section describes these key characteristics and why they are
crucial to peripheral displays. Table 1 gives examples of
each key feature from our survey.

Notification
In typical use, peripheral displays allow people to monitor
continually changing, non-critical data while performing a
separate primary task, and to be notified when more
important data arrives. So, peripheral displays can present
both critical and non-critical information. It follows that
critical and non-critical information must be treated
differently by a display: the most critical information
should be displayed so that it grabs the user’s attention and
potentially requires action and the least critical information
should be displayed so that it does not attract conscious
attention. We call these differences notification levels.
Higher notification levels correspond to more critical data
and are displayed in a way to grab attention. Lower
notification levels correspond to non-critical data and are
displayed to only grab peripheral attention.

Based on our survey, and the discussion of attention
presented above, we defined five notification levels.
Notification levels represent levels of importance. This is
based both on the information source, and, ideally, some
context about the interruptibility of the person receiving the
information. They are “demand action,” “interrupt,” “make
aware,” “change blind,” and “ignore.” “Ignore” represents

inf
cor
cor
“in
“In
gra
“in
act
GU
bec
use
inf
wit
ma
ale

N
ot

ifi
ca

tio
n

Ignore: Possibly all display ignore some data.

Change Blind: AROMA, Digital Family Portrait, InfoCanvas, Agentk Tickers

Make Aware: AROMA, Lumitouch, Audio Aura, InfoCanvas, Pinwheels, Dangling String, Sideshow, Agentk Tickers, Kimura,
Information Percolator, Informative Art

Interrupt: Lumitouch, Sideshow

Demand Attention: No displays from survey. Example: alarm clo

T
ra

ns
iti

on

Explicitly supported transitions, by notification level (Ignore an

Change Blind: AROMA (animated image changes), Agentk Tic
image movement), Information Percolator (natural animation of bu

Make Aware: Audio Aura (meaningful sounds overlaid on backg

Interrupt: Sideshow (text box with important information appears

A
bs

tr
ac

tio
n Degradation: Kimura (low resolution images of documents shown

Feature abstraction: AROMA (activity), Audio Aura (email,
activity, relationships), Cook’s Collage (duration, heat), Lum
InfoCanvas (various), Dangling String (LAN traffic), Information

Table 1: A survey of some prototypical peripheral displays, showin
Displays include AROMA [27], the Digital Family Portrait [25], Audio
[5], InfoCanvas [23], Information Percolator [8], Dangling String [33]
and Kimura [16]. Systems in italics lack detail for a definitive classi
due to lack of reported evaluations.

Th
not
tho

Tra
Wi
dev
gra
Tra
con
mo
abo
the
of

Re
inf
alth

Page 3

ormation that should not be displayed, and does not
respond to any attention level. “Change blind”
responds to inattention, while “make aware” and
terrupt” correspond to a form of divided attention.
terrupt” could also be characterized as an attempt to
b focused attention. “Demand action” is similar to
terrupt,” but it also requires that the user perform some
ion to stop the alerting. This level, while common in
Is, should be used sparingly in peripheral displays,
ause only very critical information should require the
r to drop everything and attend to the displayed
ormation. Thus, change blind displays show information
h care to not distract the user, while ambient displays
y attempt to make a person aware of information and
rting displays may use all levels.

ck.

d Demand Attention were not found in our survey):

kers (text fade, roll, ticker), InfoCanvas (may animate some
bbles moving up)

round sound)

), Lumitouch (LEDs flash or change color)

 in a history montage of desktop activity)

group pulse), Digital Family Portrait (health, environment,
itouch (presence, interaction), Pinwheels (LAN traffic),

Percolator (various), Informative Art (various)

g how they use Notification, Transition, and Abstraction.
Aura [26], Cook’s Collage [31], Lumitouch [4], Pinwheels
, Sideshow [3], Agentk Tickers [21], Informative Art [29],
fication. Our notification classifications are best guesses

e displays we surveyed used all but the demand action
ification level. Make aware was by far most common,
ugh several displays used change blind and interrupt.

nsitions
th notification levels defined, the peripheral display
eloper must determine how to display information to
b the appropriate amount of attention from the user.
nsitions are based upon the notification level of the data,
text such as the current noise level in a room, and the
dality of the display. For example, if the last bus were
ut to arrive at a bus stop causing a notification event at
 “interrupt” level, our bus arrival display might flash all
its LEDs rapidly.

cent studies give us some guidance about how to display
ormation corresponding to each notification level,
ough much work remains to evaluate exactly how subtle

of 10

or abrupt changes on a display must be to correctly grab
human attention. Alerting displays typically utilize abrupt
transitions for important information. Several applications
[3, 4] have shown that significant changes in the interface
will draw a user’s attention. For ambient displays,
McCrickard and Zhao found that animations like fading,
rolling, and tickering made it difficult to tell when data
changed [21], suggesting that repetitive and gradual
animations are appropriate for change blind transitions.
However, Maglio and Campbell found that continuous
movement in tickers is more distracting than discrete
scrolling [19]. Further research is needed to determine the
best way to transition changed data in peripheral displays.

Based on these results, it is clear that animations of
different types are a key tool for supporting transitions in
applications that do not want to distract users. Our survey
confirmed that applications explicitly supporting transitions
to minimize motion are more likely to be change blind
[27,21,23,8]. Other applications, such as Audio Aura, were
meant to minimize distractions to the user, but did not make
an effort to provide change blind transitions [26]. We
categorized such displays as make aware. While in most
papers, evaluations were not performed to confirm this, the
motion of such applications is often significant or abrupt.
Our survey also showed that alerting displays used abrupt
or significant motion to purposefully interrupt [3,4].

Abstraction
Peripheral displays do not display information directly;
rather they use abstraction to display information so that it
may be more easily interpreted with less attention.
Abstraction is the process of removing or extracting data so
that the result includes fewer or different details than the
original. The AROMA project showed that abstraction can
convey sufficient information while remaining subdued
enough to allow a user to concentrate on a main activity
[27]. AROMA defined two types of abstraction:
degradation and feature extraction. Degradation involves
throwing away some of the original data. Feature extraction
involves analyzing the original data, extracting certain
features, and potentially deriving new data.

For example, in the AROMA project, remote presence was
abstracted and displayed peripherally. Data in AROMA is
passed through abstractor objects that perform basic signal
processing, accumulations, and comparative analyses (such
as history processing). These abstractor objects take sensor
data (i.e., from a microphone or camera) and create
abstractions like “activity level” in the remote location.
This is a form of feature extraction that derives new
information from the extracted data.

Almost all of the displays we surveyed abstracted data in
some way. Kimura used degradation [16], while the others
all used feature extraction. Most applications used simple
abstraction, without deriving new data.

In Summary
To summarize, we have identified key characteristics of

peripheral displays, and broken them down in terms of
features based on cognitive science literature and past work
in peripheral display design and evaluation. While this
survey represents a contribution, it also provides guidelines
and requirements for the tool we have built. The next
section describes how our toolkit addresses each of these
characteristics, and describes our toolkit architecture.

ARCHITECTURE
Before describing how the Peripheral Displays Toolkit
(PTK) supports the issues described above, we introduce
the basic architecture. Because peripheral displays are often
physically based, and because an information source may
not be physically co-located with a display, we support
some standard issues addressed by other similar toolkits
such as AROMA [27], Real World Interfaces [22], Phidgets
[6], and iStuff [2]. In particular, we support storage of
history, and distributed input and output components (as do
iStuff and AROMA), and easy switching of the connections
between them with the help of a discovery system (inspired
by iStuff). The PTK currently provides some basic library
elements that may be subclassed, such as input from web
pages and microphones and Phidget output.

Our contribution is the addition of support for abstraction,
notification, and transitions. AROMA has some support for
abstraction, and support for distributed input and output
handling, but does not support notification or transitions.
To our knowledge, no toolkit supports all three. Here we
present the architecture in which they sit, while the next
section presents the details of how each is supported.

Distributed Input, Output, and Server
The PTK has an event-based, distributed architecture
consisting of three key pieces: the input source(s), the PTK
server, and the output application(s). (See Figure 3.)
Because these components are decoupled from each other,
they are easily reused in new peripheral displays. Multiple
output applications can subscribe to a single input source
via the PTK server, facilitating code reuse and allowing for
easier prototyping of outputs. Inputs and outputs can be
easily swapped and reconnected, via the discovery system,
allowing for richer interface experimentation.

Data flows from input sources to the PTK server, which
routes a data event to all the outputs that have subscribed to
receive events of this type. The output application is the
most complex part of the toolkit, and includes support for
abstraction, notification, and transitions. It borrows parts of
its structure from the event-handling infrastructure first
presented in ArtKit [9] and later in SubArctic [11].
However, rather than simply delivering events to a
particular display device in the output application, an event
is passed first to an abstraction subsystem which converts it
to another data type (if necessary), then to a notification
subsystem which sets the notification level, followed by an
output subsystem that selects one or more output devices.
Each output device then passes the event to a transition
class that determines how to display it. A static event
history is kept in the server, and each output application

Page 4 of 10

Input

Server

Output
Policy 1

Notification
Policy 3

Abstraction
Policy 1

…

Abstraction
Policy 2

Notification
Policy 1

Notification
Policy 2

Output

Abstractor

…

Not. Setter

…

… …

TransitionOutput

…

Input

Transition

…

Input

Server

Output
Policy 1

Notification
Policy 3

Abstraction
Policy 1

… …

Abstraction
Policy 2

Notification
Policy 1

Notification
Policy 2

Outpu Application

Abstractor

…

Abstractor Abstractor Abstractor

…

Not. Setter

…

Not. SetterNot. SetterNot. Setter

…

…… ……

TransitionOutput

…

OutputOutputOutput

…

Input

Transition

…

Figure 3
The PTK architecture.
One or more inputs
communicate with a
server (far left). An
application installs
abstractors, notification
setters, outputs, and
transitions (italics) in
their respective policies
(bold). Input is then
fed through each in
turn.

maintains a runtime history of events for use by abstractors,
notification setters, and transition classes.

To illustrate this more concretely, we next describe how
data is represented in the toolkit, followed by the lifecycle
of a particular piece of data, the movement of a bus in our
bus display. We conclude with a brief description of the
steps needed to create an application in the PTK. The
following section describes separately how each of the
three display characteristics, abstraction, notification, and
transitions, are supported in the PTK.

Data and Templates
When data enters the toolkit, it is stored in basic data types:
binary (such as on/off data), number, number range, string,
or file (such as image, sound, or text data). Support for
these data types was a result of our survey of existing
displays: we did not find any display using data that would
not fit into at least one of these categories. For example, the
input source to the Bus LED provides the number of
minutes left until a bus arrives.

One or more basic data types are stored in a template.
Templates come in a variety of types, though untyped
templates are supported. In addition to our basic data types,
we include four template types in the PTK, though more
could easily be added: audio, image, light, and turning
motor. A typed template includes specific pieces of data
and methods to manipulate that data. For example, the
audio template includes the following data: sound (file of
the audio recording), volume (a number range, with the
minimum value being 0 and the maximum value being the
maximum volume), and frequency (a number range).

Each template is identified by metadata objects. Metadata
contains information about the input source generating the
template. Metadata always includes the type of the template
(audio, image, etc.) and it could also include location

information and other descriptions. An application
subscribes to receive events by telling the server what
metadata it is interested in. For example the bus display
subscribes to all templates of type “bus” with “bus number”
matching any of six bus line numbers it displays.

The Lifecycle of an event
Each application receives data from the server and
processes it in a main event loop. This loop sends the data
to three policies, in order: abstraction policy, notification
policy, and output policy (which includes transitions). Each
policy passes the event to a series of abstractors,
notification setters, and outputs, respectively. The policies
implement rules for how the event is to be passed to these
objects, in what order, and when control should be returned
to the main event loop. As a result, an application developer
can create complex effects by chaining together multiple
abstractors or notification setters.

When the output application (the large box to the right of
the server in Figure 3) receives an event from the server,
the event is passed to the main event loop. Event handling
and dispatch uses a similar architecture to the ArtKit and
subArctic GUI toolkits [9,11]. The main event loop begins
with a call to the processEvent method. This loops
through lists of policies as depicted in Figure 3. We use a
breadth-first traversal: each row of each policy list will
execute together. For example, the kth abstraction policy
will pass the event to its abstractors, then the kth notification
policy will pass the event to its notification setters, and
finally the kth output policy will offer the event to its
outputs. Once a row is complete, the main event loop will
repeat this process for the next row, until all rows have
been executed.

The toolkit provides default policies, abstractors, and
notification setters. The defaults, derived from our survey,

Page 5 of 10

are designed to be generic and are parameterized for the
needs of specific applications. If the defaults are not
appropriate, it is easy for a developer to create their own
and install them. For example, it is easy to simply install a
new notification setter in a notification policy. Similarly, an
application developer can easily control which abstractors
and notification setters are associated with each output
device. If two outputs are installed in the same output
policy, they will receive events that went through the same
abstractors and notification setters. If in different policies,
they will receive events that have been handled separately.
Policies are rarely replaced, and none of our five test
applications required any change to policies.

As an example of the event life cycle, events in the bus
display begin with the bus input source, which reads bus
schedules and determines how much time is left until six
particular buses arrive. The input source wraps each
number in a template, sets the metadata to indicate that it is
bus arrival data and to specify which bus it represents, and
dispatches it to the server. The server receives the six
events and compares their metadata to the application’s
subscription’s metadata. It sends the six events, one at a
time, to the subscribing bus display output application.

The application’s toolkit-provided communication class
receives an event and sends it through the main event loop.
First the event is abstracted to a light template by an
abstractor from our library, installed by the application
developer. The time until bus arrival is translated to the
number of LEDs that should be turned on. Next the event is
passed to the notification policy, which routes the event
through two (library) threshold notification setters that look
for different ranges of bus distance. With the notification
set, the event is sent to the output policy, which loops
through all six outputs (each represents a bus with a row of
LEDs). The outputs check the metadata to see which bus
the event represents and the appropriate output passes the
event to its (custom) transition policy, after which the event
is displayed.

Creating a Peripheral Display
Here we continue the bus display example. Its input object
is a class that has information about each bus route, and
generates events of type Number at one minute intervals
indicating a bus’ distance from the bus stop in minutes.
There are six output objects, each a row of LEDs that can
be individually controlled. The output objects make use of
the Phidgets toolkit to control the LEDs [6]. The base
classes that were extended to create these inputs and
outputs handle communication with the PTK server
automatically. All of this is similar to what one might
create in other existing toolkits such as iStuff [2].

The bus display application encapsulates all six output
objects. All are installed in the same output policy, and
given copies of the same transition object. Thus, they share
the same abstractors and notification setters: the single
abstractor and two threshold notification setters mentioned

above in the previous subsection. The application developer
must also specify which input events are of interest, by
creating metadata objects containing that information.

SUPPORT FOR THREE KEY CHARACTERISTICS
Each of the key characteristics of peripheral displays,
abstraction, notification, and transitions, are supported by
the PTK architecture and library. As previously described,
each characteristic is important to peripheral displays. By
providing toolkit support for them, our goal is two-fold.
First, we hope to enable easier creation of peripheral
displays. Second, we hope to encourage designers to think
about these important issues when designing their
peripheral displays. For example, toolkit level support for
notification and transitions may help designers focus on
design decisions affecting the kind of human attention their
display is attracting.

Although our focus has been on the toolkit architecture, we
have developed a rudimentary library of objects supporting
abstraction, notification, and transitions. Additionally, we
have developed five applications, discussed in more depth
in the next section. Here, we describe the PTK’s support for
each key characteristic.

Abstraction
Abstractors convert between events of different types. We
currently provide default abstractors that convert from input
data to numbers, switches, audio, images, light, and motors
(we plan to support other basic and template data types in
the future). Application-specific feature abstraction is
specified by overriding a Translate class and passing
that in to the appropriate abstractor. For example, when
converting a bus arrival time to a number of LEDs to light
up (using the ToLightAbstractor abstractor), a
developer provides a translator that translates the arrival
time to an appropriate number range.

A custom abstractor may be implemented when a more
complex analysis of sensed data is required. For example,
we have written a recognizer that extracts telephone rings
from non-speech audio. A developer can easily add other,
more complex application-specific abstractors.

As stated above, the PTK architecture allows for multiple
abstractors to be chained, meaning the results from one may
become the input to another. For example, suppose we
wanted to perform telephone recognition and then abstract
the result to be displayed by a light. The output from the
telephone abstractor would be the input to the
ToLightAbstractor.

Notification
After an event is abstracted, its notification level is set.
Notification levels are commonly chosen based on either a
threshold, exact match, degree of change, or pattern match.
All but pattern match are currently provided by the PTK
library.

Thresholds: Thresholds are important when a peripheral
display wants to set the notification level by the range in

Page 6 of 10

which input data falls. In the bus display, notification is set
to interrupt when a bus is within six minutes of the stop,
but is set to make aware otherwise.

Exact match: An exact match requires data to exactly
match a value provided by the application developer. For
example, an email display might select the “interrupt”
level when an email arrives from a specific author.

Degree of change: The degree of change notification setter
compares the current event to the previous event, and
determines the degree of change. A developer may specify
different change thresholds for different notification
levels. For example, a news ticker shows news headlines
that change infrequently, so when a new headline appears,
the user may wish to be made aware of it.

Pattern matching: Although not currently implemented, a
notification setter might check for patterns in the data to
select the notification level. For example, a display that
visually shows the sounds occurring in a room may want
to ignore background noise. If the pattern of the
background noise can be determined, the notification level
for this data could be set to ignore.

In addition, notification levels can be modified based on a
local context sensor (we currently support ambient noise
level sensing using a microphone). We can reduce
notification levels if a noisy or busy environment is
detected.

Transitions
Each output object has an associated transition class used to
render the current notification setting. Transitions in the
PTK are designed to allow for modular control over the
exact behavior of the display as it transitions from the
previous information event to the new event. A transition’s
primary role is to create a series of display events for the
output object that provide a desired change of awareness
for the user (such as change blind, make aware, or
interrupt). These display events are displayed by the output
object in the order they are generated. Transitions most
commonly take the form of simple animations, and may
have real-time constraints. The transition object spaces
events to fit within a specified amount of time set by the
application developer. The output class is then responsible
for displaying information within those time constraints.

Our default transition class supports the major types of
transitions found in our survey: smooth transitions (having
many incremental display steps between the previous event
and the new event), or abrupt transitions (show the new
event without any intermediate transitional steps), or
attention grabbing transitions (intermediate display steps
are included that create sharp contrast to catch the user's
focus). Thus, an event with an interrupt notification level
generates a quick flashing sequence, while make aware
generates an abrupt change, change-blind generates a
smooth animation, and ignore is not displayed. By
overriding this class, the toolkit user can arbitrarily define

these fundamental animations or add any number of
additional ones.

At a low level, this is supported as follows: The transition
class generates default sequences of events for each type of
notification (ignore, change blind, make aware, interrupt,
and demand attention). To do this, it depends on two
display-specific methods: make_blank, which should
generate an “invisible” event, and linear_map, which
should generate a linear interpolation between the old event
and the new event, at intervals specified by the display
designer. Additionally, it contains a method for each type
of notification that implements the standard animations
described above.

At a high level, the generic output class functions as
follows. First it asks the transition class installed by the
application developer to generate a sequence of events to be
animated, given the previous and new event and
notification levels. These events are placed in a queue. The
output component then displays the events in order.

EXAMPLE APPLICATIONS
We have designed and implemented five applications using
the PTK architecture: two physical output displays of bus
schedule input; one on-screen output display of news and
stock information; and two output displays of audio input.
The applications were selected to demonstrate the different
features of our toolkit. We re-implemented two applications
developed as part of our past work in ambient displays (one
bus [20], and one non-speech audio application [10]).
Additionally, we re-implemented a third-party application
(the news ticker) [21]. In each case, the flexibility of our
architecture allowed us to expand on the features supported
in the past. Together, these applications demonstrate that
the PTK enables easier support for the key features of
peripheral displays, supports easier prototyping, and that it
can allow applications to be defined in terms of issues
relating to human attention such as notification and
transitions.

Bus Mobile
The Bus Mobile, shown in Figure 4 (left), gives users a
sense of how much time is left until popular buses reach
their chosen bus stops [20]. It includes six tokens, each
representing a bus line. At 24 minutes before a bus arrives
at its stop, its token lowers 24 inches below the mobile’s
skirt. It rises one inch every minute until it disappears under
the skirt when the bus has left the bus stop.

A heuristic evaluation of the original Bus Mobile found
several usability problems. First, the Bus Mobile did not
properly use notification. The major notification happened
at 24 minutes when the bus token lowered from 0 to 24
inches. This action interrupted users rather than making
them aware of the approaching bus. The most important
notification needed was when the user actually had to leave
for the bus stop, when the token was about 5 inches from
the top. This event was not distinguished in any way from
other events, making it essentially change blind to users.

Page 7 of 10

Figure 5: Three images of the stock and news ticker. (top
and middle images) The news headline flashing red to
black (bottom image) The stocks fading in.

Use of PTK architectural features
We re-implemented the Bus Mobile with the PTK. Since
the Bus Mobile did not make good use of notification or
transitions, we did not find any savings in the
reimplementation as far as lines of code or code
complexity. The input and output code in the original Bus
Mobile were highly integrated, causing the two pieces to be
indistinguishable. Using the PTK separated the two,
allowing us to reuse the bus schedule input and much of the
output application in the Bus LED Display.

Bus LED
The Bus LED Display, shown in Figure 4 (right), took into
consideration the usability problems of the Bus Mobile,
assigning more appropriate notifications and transitions to
events. The display consists of six columns of LED lights,
arranged horizontally, labeled below with the
corresponding bus number. There are eight LED lights in
each column whose on/off values are controlled by a
Phidget interface kit [6]. Each LED corresponds to a three-
minute window. The LED lights turn on from top to
bottom; e.g. when a bus is eight minutes away, the top six
LED lights are on. When the bus is six minutes away, the
LED lights flash on and off a few times to catch the user’s
attention (an “interrupt” event). Other than the one flashing
event, the LED light changes are as unobtrusive as possible
to keep the display in the user’s periphery.

Use of PTK architectural features
The PTK implementation of the Bus LED Display used the
same input as the Bus Mobile and required only small
modifications to the Bus Mobile code. Changes included
using a different abstractor to translate minutes to number
of LED lights and changes to the parameters for the
notification setters. Notification was set to interrupt when
the bus was six minutes away, make aware when the bus
was between 1 and 24 minutes away, and ignore otherwise.
The output class was re-implemented, since new hardware
was used. The transitions class was modified by overriding
make_blank to turn all of the lights off, with the result
that an interrupt transition would flash the lights on and off.

Stock-News Displays
As a demonstration of our support for a variety of
transitions and for alerting displays, we chose to re-
implement a modified version of the information ticker

presented by McCrickard [21]. In addition to displaying
news (we chose to show the top five headlines from
CNN.com), our ticker displays current stock prices. Figure
5 shows images of the ticker, with stocks on top and news
below.

Figure 4: The Bus Mobile (left)
and Bus LED (right, also shown
in Figure 1)

McCrickard’s original ticker was a simple scrolling-text
display. The text was only updated when it was not visible.
Hence, all information updates were change-blind. Our
stock and news ticker supports arbitrary notification levels
and transitions. Updates are change blind by default. When
Intel’s stock changes by a small amount, an update is set to
make aware. When the word “Iraq” appears in a headline,
or a very large change in Intel’s stock occurs, an update is
set to interrupt. Change-blind transitions were implemented
as fade-out/fade-in transitions where information updates
were conducted while the text was transparent. Make-aware
transitions were implemented as a single flash, during
which the scrolling text was turned green. Interrupt
transitions were implemented as multiple flashes, during
which the text color altered between red and its usual black.

Use of PTK architectural features
The stock and news ticker require a web page parser, which
is part of the toolkit library. No customized notification
setters were required. To support the special transitions
described above, four methods had to be subclassed to
perform display-specific actions: the standard make aware
method was modified to flash the text in green once, the
standard interrupt method was modified to flash from black
to red instead of black to blank, make_blank was
modified to generate transparent text, and linear_map
was overridden to fade between events.

Remote audio awareness -- Ring Ticker
The Ring Ticker (top of Figure 6) is designed for those who
cannot easily hear important audio events. Its design is
based in part on our recent work in peripheral sound
displays for the deaf [10]. Currently, the ticker provides
awareness of one type of sound: telephone ring tones.
When the phone rings, the word “ring!” slowly fades into
view as it scrolls across the ticker.

Use of PTK architectural features
This display demonstrates feature abstraction (our
abstractor “recognizes” rings based on key frequency
features present across events). This is the most complex

Page 8 of 10

abstractor we built. It also demonstrates re-use: it was built
using the same output class and transition class as the
stock-news display. We simply installed a different
abstractor (the ring recognizer), and different notification
level setters. Notification level is always set to either “make
aware” (which causes the word “ring!” to appear) or
“ignore” (which causes it to disappear again).

Remote audio awareness -- Guitar
The Guitar, shown at the bottom of Figure 6, provides
awareness of audio events occurring in a remote space by
plucking a string. A single vertical string runs down the
center of the instrument. A Phidget servomotor in the black
central area pulls a guitar pick across the string, whose
tension is controlled by another servomotor not visible in
the image. Thus, the display can control pitch and the
frequency with which the string is plucked. The result is an
audible indication of activity levels in a remote space. The
greater the activity, the higher the pitch and more frequent
the plucks.

Use of PTK architectural features
Both the Guitar and the Ring Ticker used the same input
source simultaneously. The Guitar used a different
abstractor and notification setters. It used an abstractor to
convert remote audio volumes to servomotor positions.
Notification levels were set to change blind, make aware, or
interrupt, using a threshold setter, based on volume.

Discussion
Our applications demonstrate that the PTK facilitates code
reuse, enables easy interface experimentation, and supports
the design of displays that consider human attention
through notification and transitions.

The two bus arrival displays demonstrate the advantages of
our architecture in supporting a design that is focused first
and foremost on issues of attention. The ticker
demonstrated our ability to implement an example
application from the literature, and highlighted the
flexibility of our transition system. Finally, the two audio
displays demonstrated the ability of the PTK to take the

same input and support applications with varying levels of
abstraction. Two displays can show different characteristics
of the audio input: volume, frequency, or both.

Among the five applications we have built, two did not use
abstraction, we were able to use the default classes with
custom translators in three cases, and we created one
complex abstractor, the ring recognizer.

Figure 6: top: the ring
ticker. bottom: the
guitar display

Our default notification setters can be parameterized to
meet most application needs. For example, among the five
applications we have built, we were able to use the default
classes in four applications, and created two subclasses
(most applications used multiple notification setters). It is
easy to create custom notification setters when necessary.

In the three applications we implemented that used
transitions, we relied on the standard transition
functionality, overriding methods only to add display-
specific functionality. Two of the applications are GUI
displays while the third displays transitions on LEDs.
Transitions could also be done in audio or other modalities.

Together, we feel that these applications illustrate the
flexibility and strength of the characteristics we support in
the toolkit.

CONCLUSIONS AND FUTURE WORK
Based on a survey of existing peripheral displays and
cognitive science literature, we have characterized
peripheral displays according to their use of three key
characteristics: abstraction, notification, and transitions.

We then developed a tool to support the building of
peripheral displays, based on these characteristics. In
addition to supporting basic issues highlighted by other
toolkits in this domain, including distribution and discovery
of available input sources, our tool provides explicit
support for each of the three characteristics we identified.

We have validated this tool by building a total of five
peripheral displays, representing variations on three
different applications. Two are previously-built applications
that we re-implemented with the PTK [10,20], and a third is
an application originally presented in the literature [21].
Each of these makes use of a variety of library and custom
abstraction, notification, and transition objects.

In sum, these five displays illustrate the importance of the
characteristics highlighted in our survey, and show that by
supporting them, the toolkit eases prototyping, enables
interface experimentation and supports the design of
displays that consider human attention through notification
and transitions.

As always, this is a work in process. We have focused little
effort on creating a truly complete toolkit library. In the
future, we plan to conduct studies that can help us to
determine how best to populate our library. In particular,
we will collaborate with cognitive scientists in determining
the amount of attention different transitions require of
users. Based on these studies, we will expand the range of

Page 9 of 10

animations supported by our transition implementation, and
include more sophisticated support for animation in our
transition class [12]. We also plan to include a larger
variety of data types, including streaming data.

We are also interested in expanding the interpretation of
local context currently available to transition classes in the
toolkit. For example, we hope to leverage off the work of
Hudson et al. [13], who explored different sensors
appropriate for determining interruptibility.

Finally, we plan to use our toolkit to continue to build and
evaluate a variety of peripheral displays, expanding our
understanding of the evaluation techniques and tools
necessary to develop these intriguing computational
devices, and in the process learn about the factors that
influence the success of these displays.

REFERENCES
1. Abowd, G.D., et al., “The Human Experience.” IEEE

Pervasive Computing 1(1):48-57. 2002.

2. Ballagas, R., et al. “iStuff: A physical user interface toolkit
for ubiquitous computing environments”. In Proc. of CHI
2003. To appear.

3. Cadiz, J. et al. “Designing and deploying an information
awareness interface”. In Proc. of CSCW’02, pp. 314-323.
2002.

4. Chang, A., et al. “Lumitouch: An emotional communication
device”. In Extended Abstracts of CHI '01, pp. 371-2. 2001.

5. Dahley, A. et al. “Water lamp and Pinwheels: Ambient
projection of digital information into architectural space.” In
Extended Abstracts of CHI’98, pp. 269-270. 1998.

6. Fernandez-Duque, D. and Thornton, I.M. “Change detection
without awareness: Do explicit reports underestimate the
representation of change in the visual system.” Visual
Cognition, 7: 324-344.

7. Greenberg, S. and C. Fitchett. “Phidgets: Easy development
of physical interfaces through physical widgets.” In Proc. of
UIST ’01, pp. 209-218. 2001.

8. Heiner, J. M. et al. "The Information Percolator: ambient
information display in a decorative object", In Proc. of UIST
’99. pp. 141-148. 1999.

9. Henry, T.R., et al. “Integrating gesture and snapping into a
user interface toolkit.” In Proc. of UIST ’90, pp. 112-122.
1990.

10. Ho-Ching, W. et al. “Can you see what I hear? The design
and evaluation of a peripheral sound display for the deaf.” In
Proc. of CHI’03. To Appear.

11. Hudson, S.E. and Smith, I. “Supporting dynamic
downloadable appearances in an extensible user interface
toolkit.” In Proc. of UIST’97, pp. 159-168. 1997.

12. Hudson, S.E. and Stasko, J.T. “Animation support in a user
interface toolkit.” In Proc of UIST’93, pp. 57-67. 1993.

13. Hudson, S.E. et al. “Predicting human interruptibility with
sensors: A wizard of oz feasibility study.” In Proc. Of
CHI’03. To appear.

14. Intille, S. S. “Change blind information display for
ubiquitous computing environments.” In Proc. of Ubicomp
’02, pp. 91-106. 2002.

15. Linnett, C. Perception Without Attention: Redefining
Preattentive Processing. PhD Thesis. UC Berkeley. 1996.

16. MacIntyre, B., et al. “Support for multitasking and
background awareness using interactive peripheral displays.
In Proc. of UIST ‘01, pp. 41-50. 2001

17. Mack, A. and Rock, I. Inattentional Blindness. MIT Press,
Cambridge. 1998.

18. Mack, A. “Perceptual organization and attention.” Cognitive
Psychology. 24:475-501. 1992.

19. Maglio, P.P. & Campbell, C.S. “Tradeoffs in displaying
peripheral information.” In Proc. of CHI’00, pp. 241-248.
2000.

20. Mankoff, J. et al. “Heuristic evaluation of ambient displays.”
In Proc. of CHI’03. To Appear.

21. McCrickard, D. S. and Zhao, Q. A. “Supporting information
awareness using animated widgets.” In USENIX Technical
Program, pp. 117-127. 2000.

22. McCrickard, D. S. et al. “Supporting the construction of real
world interfaces.” In Proc. Of HCC’02, pp. 54-56. 2002.

23. Miller , T. and Stasko, J. "InfoCanvas: A highly personalized,
elegant awareness display", in Supporting Elegant Peripheral
Awareness, workshop at CHI ’03. To Appear. 2003.

24. Myers, B. et al. “Past, present and future of user interface
software tools.” ACM TOCHI, 7(1):3-28. 2000.

25. Mynatt, E.D., et al. “Digital family portraits: Providing
peace of mind for extended family members.” In Proc.
of CHI’01, pp. 333-340. 2001.

26. Mynatt, E.D., et al."Designing audio aura". In Proc. of CHI
'98, pp. 566-573. April 1998.

27. Pedersen, E. R., and Sokoler, T. “AROMA: Abstract
representation of presence supporting mutual awareness.” In
Proc. of CHI’97, pp.51-58, 1997.

28. Posner, M.I, and Petersen, S.E. “The attention system of the
human brain.” Review of Neuroscience, 13: 25-42. 1990.

29. Redström, J. et al. “Informative art: using amplified artworks
as information displays.” In Proc. of DARE’00. pp.103-114.
2000.

30. Rensink, R. “Change detection.” Annual Review of
Psychology, 53:245-77. 2002.

31. Tran, Q., and Mynatt, E. D. “Cook's collage: Two
exploratory designs.” In Technologies for Families,
workshop at CHI’02. 2002.

32. Treisman, A. “Distributed attention.” In Attention: Selection
Awareness and Control. Clarendon Press, Oxford. pp. 5-35.
1993.

33. Weiser, M. and Brown, J.S. "Designing calm technology,"
PowerGrid Journal, 1(1), July 1996.

34. Weiser, M. “The computer for the 21st century.” Scientific
American, 265(3):94-104. 1991.

Page 10 of 10

