

- Google *program* == Web search, Gmail,...
- Google *computer* == 1000's computers, storage, network
- · Warehouse-sized facilities and workloads
- New datacenter ideas (2007-2008): truck container (Sun), floating (Google), datacenter-in-a-tent (Microsoft)
- How to enable innovation in new services without first building a Google-sized company?

RAD Lab 5-year Mission

Enable <u>1 person</u> to develop, deploy, operate next -generation Internet application

- Key enabling technology: Statistical machine learning
 - debugging, power management, performance prediction, ...
- Highly interdisciplinary faculty & students
 - PI's: Patterson/Fox/Katz (systems/networks), Jordan (machine learning), Stoica (networks & P2P), Joseph (systems/security), Franklin (databases)
 - 2 postdocs, ~30 PhD students, ~5 undergrads

Examples

- Predict performance of complex software system when demand is scaled up
- Automatically add/drop servers to fit demand, without violating SLA
- Distill millions of lines of log messages into an operator-friendly "decision tree" that pinpoints "unusual" incidents/conditions
- Recurring theme: cutting-edge SML methods work where simpler methods have failed
- Sponsor feedback: Need to demonstrate applicability on at least 1000's of machines!

Utility Computing Arrives

- Amazon Elastic Compute Cloud (EC2)
- "Compute unit" rental: \$0.10-0.80/hr.
 - 1 CU ≈ 1.0-1.2 GHz 2007 AMD Opteron/Xeon core

"Instances"	Platform	Cores	Memory	Disk
Small - \$0.10 / hr	32-bit	1	1.7 GB	160 GB
Large - \$0.40 / hr	64-bit	4	7.5 GB	850 GB – 2 spindles
XLarge - \$0.80 / hr	64-bit	8	15.0 GB	1690 GB – 3 spindles

- No up-front cost, no contract, no minimum
- Billing rounded to nearest hour; pay-as-you-go storage also available
- A new paradigm (!) for deploying services?

5

But...

What *is* cloud computing, exactly?

"It's nothing new"

"...we've redefined Cloud Computing to include everything that we already do... I don't understand what we would do differently ... other than change the wording of some of our ads."

Larry Ellison, CEO, Oracle (Wall Street Journal, Sept. 26, 2008)

7

"It's a trap"

"It's worse than stupidity: it's marketing hype. Somebody is saying this is inevitable—and whenever you hear that, it's very likely to be a set of businesses campaigning to *make* it true."

Richard Stallman, Founder, Free Software Foundation (The Guardian, Sept. 29, 2008)

abovetheclouds.cs.berkeley.edu

- White paper by RAD Lab Pl's and students
 - Clarify terminology around Cloud Computing
 - Quantify comparison with conventional computing
 - Identify Cloud Computing challenges & opportunities
- Why can we offer new perspective?
 - Strong engagement with industry
 - Users of cloud computing in our own research and teaching in last 12 months
- This talk: introduce some key points of report, persuade you to visit RAD Lab later today

9

What is it? What's new?

- Old idea: Software as a Service (SaaS)
 - Software hosted in the infrastructure vs. installed on local servers or desktops
 - Recently: "[Hardware, Infrastructure, Platform] as a service"? Poorly defined, so we avoid
- New: pay-as-you-go utility computing
 - Illusion of infinite resources on demand
 - Fine-grained billing: release == don't pay
 - Earlier examples: Sun, Intel Computing
 Services—longer commitment, more \$\$\$/hour

Why Now (not then)?

- Build-out of extremely large datacenters (1,000's to 10,000's of *commodity* computers)
 - Economy of scale: 5-7x cheaper than provisioning a medium-sized (100's machines) facility
 - Build-out driven by demand growth (more users)
 - Infrastructure software: eg Google FileSystem
 - Operational expertise: failover, DDoS, firewalls...
- Other factors
 - More pervasive broadband Internet
 - x86 as universal ISA, fast virtualization
 - Standard software stack, largely open source (LAMP)

New Scenarios Enabled by "Risk Transfer"

- "Cost associativity": 1,000 computers for 1 hour same price as 1 computer for 1,000 hours
 - Washington Post converted Hillary Clinton's travel documents to post on WWW <1 day after released
 - RAD Lab graduate students demonstrate improved Hadoop (batch job) scheduler—on 1,000 servers
- Major enabler for SaaS startups
 - Animoto traffic doubled every 12 hours for 3 days when released as Facebook plug-in
 - Scaled from 50 to >3500 servers
 - ...then scaled back down

15

RAD Lab

Classifying Clouds

- Instruction Set VM (Amazon EC2, 3Tera)
- Managed runtime VM (Microsoft Azure)
- Framework VM (Google AppEngine, Force.com)
- Tradeoff: flexibility/portability vs. "built in" functionality

Challenges & Opportunities

- Challenges to adoption, growth, & business/policy models
- · Both technical and nontechnical
- Most translate to 1 or more opportunities
- Complete list in paper; I'll give an example of each
- Paper also provides worked examples to quantify tradeoffs ("Should I move my service to the cloud?")

17

Adoption Challenges

Challenge	Opportunity	
Availability / business continuity	Multiple providers & DCs	
Data lock-in	Standardization	
Data Confidentiality and Auditability	Encryption, VLANs, Firewalls; Geographical Data Storage	

Growth Challenges

Challenge	Opportunity
Data transfer bottlenecks	FedEx-ing disks, Data Backup/Archival
Performance unpredictability	Improved VM support, flash memory, scheduling VMs
Scalable structured storage	Major research opportunity
Bugs in large distributed systems	Invent Debugger that relies on Distributed VMs
Scaling quickly	Invent Auto-Scaler that relies on ML; Snapshots

Policy and Business Challenges

Challenge	Opportunity	
Reputation Fate Sharing	Offer reputation-guarding services like those for email	
	Pay-as-you-go licenses; Bulk licenses	

Breaking news (2/11/09): IBM WebSphere[™] and other service-delivery software will be available on Amazon AWS with *pay-as-you-go* pricing

Visit & give us feedback

- RAD Lab Open House, 2PM, 465 Soda
 - posters, research, students, faculty
 - meet authors: Michael Armbrust, Rean Griffith, Anthony Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ari Rabkin, Ion Stoica, and Matei Zaharia
- abovetheclouds.cs.berkeley.edu
 - Paper, executive summary, slides
 - "Above the Clouds" blog
 - Impromptu video interview with authors