The IMPACT Center

Addressing Challenges for Future IC Design and Manufacture

Kameshwar Poolla Electrical Engineering & Computer Sciences February 12, 2009 poolla@berkeley.edu 510.520.1150

UNIVERSITY OF CALIFORNIA • BERKELEY • SAN DIEGO • LOS ANGELES

Outline

The Landscape

What is happening today & what we imagine will happen tomorrow

The IMPACT Center

Who we are & what we do

A Tasting

Five Research Projects

A Success Story

Equipment Control for optimized across wafer CD uniformity

Opportunity Beckons

Clip calculus as a new paradigm

The Evolving Landscape

New Technologies

Multiple patterning, Immersion, metal gates ...

New Materials

Zr-doped TaOx, MoN, WN ...

Design/Manufacturing Interface breakdown

Need data driven models of manufacturing for design Need design aware manufacturing practice

More fabless companies

Need to deal with foundries, manage information Model of manufacturing becomes even more important

Complexity is the new bottleneck

The Target – 22 nm and beyond

Expected technologies

- Quadrupole/Quasar illumination
- Immersion Litho
- Double patterning
- Non-planar devices
- Exotic gate materials
- New transistor designs

Tools that will be necessary

- Distributed Computation: parallel or cellular processors
- Data mining, Machine Learning, fast parameter extraction
- Modeling expertise to capture effects at various space and time scales
- Process expertise to drive modeling effort
- Design expertise to impact electrically relevant performance

The Fantasy ...

Three Challenges

- You don't always get what you want
- Interactions and The Radius of Influence
- The Computation Bottleneck

What you ask for ...

What you get ...

You don't always get what you want

- Manufacturing realities cannot be modeled by simple rules
- Partial solution better predictive "models" of the manufacturing process, hierarchical abstractions
 - Models must be simple enough to run very, very fast
 - Link Manufacturing model upstream to EDA tools
 - Static timing, RC extraction, power/noise/area optimization

The Radius of Influence

OPC/RET changes at center of red zone affects AD patterns across red area

 \bigcirc

The Radius of Influence

- OPC/RET will get even more computationally expensive
- Design rules will become extremely complex
- Interactions across features
- Interactions between layers
- Interactions among processes
- Partial solution Filter through design & process
 - Concentrate on design-critical hotspots
 - Concentrate on process sensitive hotspots
 - Automated hot-spot detection and repair
 - Mask fragmentation for multiple patterning/exposure

The Computation Bottleneck

- Design cycle iterations are expensive
- Process models must be run very fast
- Design rules are now 2000+ pages!
- Partial solution stress scalability and computation in all aspects of our research

Our Response – the IMPACT Project

- IMPACT <u>http://impact.berkeley.edu/</u>
 Integrated Modeling Process And Computation for Technology
- Long term, pre-competitive, interdisciplinary research
- Supported by 21 leading Companies and State of California
- 17 Faculty + 23 Grad Students + 5 Post-docs + 3 Undergrads
- 9M\$ budget
- Major Equipment Donations
 - Centura 200 epitaxial tool from Applied Materials
 - EM Suite Simulation Package from Panoramic Technologies
 - Wafer/Mask processing credits: Spansion, SVTC, Dupont, Photronics

The Industry Team – Thanks!

The Faculty Team

Alon, Elad	EECS	UCB	Integrated System Design, Mixed-signal ICs
Chang, Jane	ChE	UCLA	Plasma mechanisms, feature modeling
Cheung, Nathan	EECS	UCB	Plasma modeling, diagnostics, surface intenractions
Dornfeld, David	ME	UCB	CMP modeling, mechanics aspects
Doyle, Fiona	MatSci	UCB	CMP modeling, chemistry effects
Komvopoulos, K.	ME	UCB	Surface Polishing, Nanomechanics
Graves, David	ChE	UCB	Plasma modeling, diagnostics, surface interactions
Gupta, Puneet	EE	UCLA	DfM, Optimization, Variability Analysis
Haller, Eugene	MatSci	UCB	Dopant and Self-Diffusion in Si and SiGe Alloys
Hu, Chenming	EECS	UCB	Device Modeling, Variability Analysis
Kahng, Andrew	EECS	UCSD	DFY, DFM, algorithms
King, Tsu-Jae	EECS	UCB	Novel Electron Devices
Lieberman, Michael	EECS	UCB	RF sources and E&M plasma modeling
Neureuther, Andrew	EECS	UCB	Litho, Pattern Transfer, Modeling/Simulation
Poolla, Kameshwar	ME/EE	UCB	DFM, Modeling, Computation, Control, Metrology
Spanos, Costas	EECS	UCB	IC Process Metrology, Diagnosis and Control
Talbot, Jan	CE	UCSD	Chemical-Mechanical Planarization
IMPACT • 15			

Our Research

Five Inter-connected Research Themes:

Litho: Through-Focus fast-CAD

DMI: Non-Rectangular Gate Modeling

Four components

- Poly gate imperfections: well-studied (SPIE'05)
- Active rounding: (ASPDAC'08)
- Line-end shortening: (DAC'07)
- Line-end tapering: (PMJ'08)

Key elements

- Equivalent length/width models
- Separate modeling for Ion and Ioff

Use Models

- Design power/performance analyses
- Interactions with design rules and OPC
- Shaping transistor channels for better devices

Case Study: DFF

		nominal	w/ diffusion rounding	delta (%)
leakage (nW)		138.69	83.49	39.8
clk→q	fall	70.57	68.54	2.9
(ps)	rise	76.07	74.07	2.6
setup time	fall	20.43	18.08	11.5
(ps)	rise	42.71	35.01	18.0

Plasma: Surface, Feature, Reactor Scale Models

plasma-surface interaction and predict profile evolution

Comprehensive CMP Modeling

Pattern Evolution Model for HDPCVD STI

IMPACT • 20

1

Transistor Design for Reduced Variability

- Very steep retrograde doping is needed to reduce σ_{VT} due to RDF
 - Engineer the channel material $(Si_{1-x}Ge_x)$ to control dopant diffusion.
- Evolve the planar MOSFET into a tri-gate structure
 - Improve channel gate control, improve robustness to process-induced variations, improve transistor performance

A Success Story – CD Control

- Critical Dimension (CD)
 - Width of printed lines
 - Varies across wafer, and wafer-to-wafer
 - greatly influenced by post-exposure bake and etch
- CD variability is the performance metric for pattern transfer
- Want: to reduce CD variability
- How? Making each process step spatially uniform is not possible
- Our approach: Control

manipulate PEB temperature spatially to compensate for downstream systematic across-wafer CD variation due to etch

- Temperature sensors
- Unprecedented Spatial and temporal resolution
- Used to model PEB plates and effect of temp on CD
- Models are used for Control

The Value of Control

- Post-Exposure-bake
 - Key process step
 - Directly impacts critical dimension uniformity
- Control spatial temperature of bake plate
- Yesterday $\pm 0.3 \text{ °C} \rightarrow \text{Today} \pm 0.15 \text{ °C}$
- Result: 1 nm reduction in CD spread
- Benefit: mid-sized fab in 1st year of product lifecycle
 ~\$3/die * 200 die/wafer * 20,000 wafer/mon * 12 mon/yr
 = 144 M\$ per year !!

CD Uniformity Control

Wafer

Water

IMPACT • 25

Wafer

Opportunity Beckons – Clip Calculus

Basic Assertion:

Working with clips is more efficient and natural than distances/rules

Potential opportunities for clip calculus clip Faster printability analysis - OPC re-use Inverse Litho Faster DRC Clips Could be non-rectangular Standard cells, macros, etc … "Central" part of a clip mask – Core Context "Outer" part of a clip context – Library Collection of clips Core & Context depend on target application Ex: DRC, OPC, Printability analysis The problem: algorithms to efficiently deal with clips core

Ex: DRC

- Current Practice
 - DRC brick is 2,000 pages and exploding
 - Conventional rule-based DRC at 22nm will be unmanageable
- Alternatives: Work with clips not distances
 - Leverage the speed of pattern match
 - Produce library of good, bad, or graded patterns
 - Use library to detect and correct new design layouts
- Open problems
 - Clip-based DRC, Hybrid Rule-Clip DRC,
 - Redundancy removal in rules, Correction!
- Core and Context
 - Core is the region that is DRC clean given the fixed Context
 - Context may not be DRC clean as that depends on Context(Context)

Use Case

- Library of known DRC clean (in core) clips
- In a mask M, use PatternMatch against library L
- Can eliminate the core of every matched clip
- Will have to do DRC on remaining areas

- What is a good metric on the space of clips?
- Difficult problem
- Must also extend to Alternating PSM, Attenuating PSM
- Metric must also be computable in the language of rectangles
- Standard pixel based metrics fail: kc_i ; c_j k² = # of disageeing pixels Treats each pixel independently Does not respect proximity
- When are two clips similar?

If the images in Silicon of the core of both clips are similar

- Suggests that we need application dependent weightings
 - Exposure & Dose sensitivity analysis will have different weights

Some Computational Problems

Mask M, clip c, library $L = f c_k g N =$ number of clips

- 1. ExactMatch: Find all instances of c in M
- 2. RoughMatch: Find all sub-patterns p in M with kp ; ck ²
- 3. VolFind: Find Area(core union)
- 4. WhereNext: Find largest rectangle not covered by clips
- 5. ExactTile: Tile M with core of clips drawn from library i.e. choose tiling to maximize Area(core union)

For 3 & 4 we have N log(N) algorithms with N log(N) pre-processing time

- Many other very interesting problems
 - Net-list covering by clips
 - Dynamic programming for inverse lithography
- These are all problems in CS, with a twist
 - Must compute based on rectangles, respect hierarchy
 - Must work on huge problems

In Summary...

- The IC revolution *will* continue
- The method of designing ICs *will* have to change
- Design and Manufacturing Interaction is much more complex
- Challenges include
 - Design & Process Complexity
 - Modeling & Computation
- IMPACT will play a key role
 - Technological value to our sponsors
 - Real educational experience for our students
 - Multi-disciplinary cutting edge research opportunities for our faculty

http://impact.berkeley.edu/

Feedback: poolla@berkeley.edu

Research Theme A – Litho

Objective	Invent a range of approximate-but-fast models based on first principles for assessing manufacturing realities upstream in the design flow
Key Projects	 Simulation of electromagnetic effects of mask edges Compact models for through-focus modeling Process parameter specific electrical devices and circuits Litho-aware decomposition for double patterning

Research Theme B – DMI

Objective	 Increase design predictability, decrease manufacturing cost and yield ramp time
	 Leverage unexplored interactions between design and manufacturing
	 Build design-usable models of process and use them to analyze/optimize design
Key Projects	 Variation modeling in BSIM compact models
	 Leakage modeling, monitoring and optimization in presence of variability
	Impact of variations on power of mixed-signal circuits
	 Modeling and optimizing for pattern-dependent variations in standard cell designs
	 Design-aware mask inspection
	Comprehensive chip-scale variability modeling

Research Theme C – Plasma

Objective	Couple models at various scales to understand plasma- surface interaction and predict profile evolution
Key Projects	 Develop fast algorithms to determine energy and angular distributions of all plasma species
	 Develop fundamental models for plasma-surface interactions
	 Develop predictable profile simulator for etch and
	deposition processes

Research Theme D – CMP

Objective	 Identify key influences of chemical and mechanical activity including the coupling" of CMP/polishing
	 Develop an integrated model of CMP material removal
•	 Verify model thru simulation and test, as a platform for model based process optimization
Key Projects	 Determine fundamental mechanics of the electro-chemical removal of material
	 Comprehensive model of CMP material removal (including pattern dependency, prior deposition processes, material induced variations etc)
	 Establish mechanical elements of CMP material removal via FEM (incl: pad, abrasive/slurry/device/surface interaction) Understand effects of slurry chemistry on abrasive agglomeration/dispersion and material nano-hardness

Research Theme E – Novel Technologies

Objective	 Investigate advanced transistor designs, materials, and processes to reduce variability and enhance performance of bulk CMOS technology
	 Develop prediction and abatement methods for systematic variations due to lithography, CMP, and etch processes
Key Projects	Transistor design optimization for robustness to variations
	 3-D strain engineering for enhanced performance
	 Dopant profile engineering via heterostructures
	 Scatterometry-based parameter extraction for calibration of OPC, CMP, and etch processes
	 Optical metrology for <i>in-situ</i> process monitoring
	 Dynamic adaptive metrologies strategies

Some computational problems ...

- There are other very interesting problems
 - Net-list covering by clips
 - Library generation
 - Dynamic programming for inverse lithography
- These are all problems in CS, with a twist
 - Must compute based on rectangles
 - Must respect hierarchy
 - Must work on huge problems
- Clip-based paradigms have good potential
 - OPC re-use
 - Faster DRC, RC extraction, printability analysis
 - Faster hot-spot detection and repair
 - Fast mask fragmentation for multiple-patterning
- Many challenging problems
 - Metrics
 - Use cases
 - Fast Algorithms

Plasma: Research Integration

• Define testbeds for research integration (LER, Gate Stack Etch, PVD etc.)

Litho: Electrical Test Patterns & Circuits

Focus Test Patterns

On-Line Database Sim/Exp

Update Query Set

Load Query Set

Delete Query Set

-1

Search with Queries

IMPACT • 39

CD = 780

Screening for Focus Sensitive Candidates

pitch (nm)

Segmented Bulk MOSFET for Reduced Variability

- Multi-gate structures provide for improved control of short- and narrow-channel effects, and reduce STI-induced stress effects
- Steep retrograde channel doping reduces V_T variation due to SDF
- Segmented bulk MOSFET combines these features to reduce variability in performance, while retaining compatibility with strained-Si, high-k/metal gate & active body biasing technologies

