The Future of Devices & Chips: A Blast from the Past?

Elad Alon

Collaborators: Tsu-Jae King Liu (UC Berkeley), Dejan Markovic (UCLA), Vladimir Stojanovic (MIT)

Berkeley Wireless Research Center University of California, Berkeley

Moore's Law and Original Issues

- Design cost
- What to do with all of the functionality possible
- Power dissipation

Power Consumption...

- Since ~2000 supply voltage (Vdd) stuck at ~1V
 - Leakage stops you from lowering threshold (Vth)
- Leads to very poor power scaling
 - 1kW chips?

Parallelism to the Rescue

- Parallelism allows slower, more energy-efficient units while maintaining performance
- Will this last forever?

Where Parallelism Doesn't Help

- CMOS circuits have an absolute minimum energy/op
 - Need to balance leakage and active energies
- Limits energy-efficiency, no matter how slowly the circuit runs

What if There Was No Leakage?

- Supply voltage decreases → energy decreases
- Mechanical switches don't leak, turn on abruptly
 - Potential pathway to continued scaling

Switch Structure & Operation

Relay Logic

- Relay delay dominated by mechanical motion
- So, implement logic as a single complex gate
 - All devices move at the same time
- Improves area, device count, performance

Logic Demonstration

- Relays built with 1µm lithography clearly not yet competitive with CMOS...
 - What does it take to get there?

Scaling and Comparing to CMOS

- Scaling similar to CMOS
 - Smaller = faster, lower voltage, lower power
- At 90nm, simulated relay adders are:
 - >9x lower E/op
 - >10x greater delay
- Reminder: parallelism enables high throughput
 - Even with slower individual elements

Relay Reliability

- Increase contact resistance to improve reliability
 - Delay dominated by mechanics anyways
- Measured > 60 billion cycles so far

Circuit Demonstration Test-Chip

- Test devices
- Logic
- Timing Elements
- Memory
- I/O

Relay DRAM

Near-Term Driver: Power Gating

[Picocube, Rabaey]

- Leakage of inactive CMOS circuits often limits embedded devices' lifetime
- Relay power gates could eliminate leakage

Roadmap: Back to the Future?

Final Note: Rethinking Scaling

- Many exciting new apps based on mobility and sensing
- Innovation and cost driven by functionality – not just computing...

[Rabaey, UCB]

[Nguyen, UCB]

[Venkatraman, Carmena, UCB]