

A Berkeley View of Big Data

Ion Stoica UC Berkeley

BEARS February 17, 2011

Big Data is Massive...

- Facebook:
 - 130TB/day: user logs
 - 200-400TB/day: 83 million pictures
- Google: > 25 PB/day processed data
- Google

facebook.

- Data generated by LHC: 1 PB/sec
- Total data created in 2010: 1 ZettaByte (1,000,000 PB)/year
 ~60% increase every year

-amplab

...and Grows Bigger and Bigger!

More and more devices

More and more people

- Cheaper and cheaper storage
 - -~50% increase in GB/\$ every year

...and Grows Bigger and Bigger!

- Log everything!
 - Don't always know what question you'll need to answer
- Hard to decide what to delete

- Thankless decision: people know only when you are wrong!
- "Climate Research Unit (CRU) scientists admit they threw away key data used in global warming calculations"
- Stored data grows faster than GB/\$

What is Big Data?

Data that is <u>expensive</u> to manage, and hard to extract <u>value</u> from

- You don't need to be big to have big data problem!
 - Inadequate tools to analyze data
 - Data management may dominate infrastructure cost

Big Data is not Cheap!

- Storing and managing 1PB data: \$500K-\$1M/ year
 - Facebook: 200 PB/year

- "Typical" cloud-based service startup (e.g., Conviva) – Log storage dominates service startup (e.g., Conviva)
 - infrastructure cost

Hard to Extract Value from Data!

- Data is
 - Diverse, variety of sources

- Uncurated, no schema, inconsistent semantics, syntax
- Integration a huge challenge
- No easy way to get answers that are
 - High-quality
 - Timely
- Challenge: maximize value from data by getting best possible answers

Requires Multifaceted Approach

- Three dimensions to improve data analysis
 - Improving scale, efficiency, and quality of algorithms (Algorithms)
 - Scaling up datacenters (Machines)
 - Leverage human activity and intelligence
 (People)
- Need to adaptively and flexibly combine all three dimensions

<u>Algorithms</u>, <u>Machines</u>, <u>People</u>

• Today's apps: fixed point in solution space

Need techniques to dynamically pick best operating point

The AMP Lab

AMP Faculty and Sponsors

- Faculty
 - Alex Bayen (mobile sensing platforms)
 - Armando Fox (systems)
 - Michael Franklin (databases): Director
 - Michael Jordan (machine learning): Co-director
 - Anthony Joseph (security & privacy)
 - Randy Katz (systems)
 - David Patterson (systems)
 - Ion Stoica (systems): Co-director
 - Scott Shenker (networking)
- Sponsors: Google
 Google
 Google
 Microsoft
 Microsoft

<u>A</u>lgorithms

- State-of-art Machine Learning (ML) algorithms do not scale
 - Prohibitive to process all data points

<u>A</u>lgorithms

- Given any problem, data and a budget
 - Immediate results with continuous improvement
 - Calibrate answer: provide error bars

I

<u>A</u>lgorithms

- Given any problem, data and a time budget
 - Immediate results with continuous improvement
 - Calibrate answer: provide error bars

<u>A</u>lgorithms

Given any problem, data and a time budget
 Automatically pick the best algorithm

16

Machines

- "The datacenter as a computer" still in its infancy
 - Special purpose clusters, e.g., Hadoop cluster
 - Highly variable performance
 - Hard to program
 - Hard to debug

Machines

Machines

Humans can make sense of messy data!

- Make people an integrated part of the system!
 - Leverage human activity
 - Leverage human intelligence (crowdsourcing):
 - Curate and clean dirty data
 - Answer imprecise questions
 - Test and improve algorithms

Challenge

 Inconsistent answer quality in all dimensions (e.g., type of question, time, cost)

Real Applications

- Mobile Millennium Project
 - Alex Bayen, Civil and Environment Engineering, UC Berkeley
- Microsimulation of urban development
 - Paul Waddell, College of Environment Design, UC Berkeley
- Crowd based opinion formation
 - Ken Goldberg, Industrial Engineering and Operations Research, UC Berkeley
- Personalized Sequencing
 - Taylor Sittler, UCSF

Personalized Sequencing

The AMP Lab

Big Data in 2020

Almost Certainly:

- Create a new generation of big data scientist
- A real datacenter OS
- ML becoming an engineering discipline
- People deeply integrated in big data analysis pipeline

If We're Lucky:

- System will know what to throw away
- Generate new knowledge that an individual person cannot

Summary

- Goal: Tame Big Data Problem
 Get results with right quality at the right time
- Approach: Holistically integrate
 <u>A</u>lgorithms, <u>M</u>achines, and <u>P</u>eople
- Huge research issues across many domains

