How Efficient Can We Be?:
Bounds on Algorithm Energy Consumption

Andrew Gearhart
Relation to ASPIRE

- ASPIRE ("Algorithms and Specializers for Provably-optimal Implementations with Resiliency and Efficiency") -> recall Krste’s talk

- “Provably-optimal” is the focus of this work

- Software and hardware design use feedback to “cotune” compute kernel energy efficiency
Previous Work: Communication Lower Bounds

- Bounds on bandwidth and number of messages for most of dense and sparse linear algebra
- Bounds for homo and heterogeneous machine models (i.e. GPU/CPU)
- Led to the development of many “communication-optimal” algorithms
Communication is energy inefficient!

- On-chip/Off-chip gap isn’t going to improve much

Data from John Shalf, LBNL
Communication is energy inefficient!

• Communication lower bounds + machine models = lower bounds on energy
• Machine models can be simple:
Communication is energy inefficient!

- Communication lower bounds + machine models = lower bounds on energy
- Machine models can be simple:
 - Or more complicated...
Runtime and Energy Models

• Currently simple linear expressions that include bandwidth (W) and per transfer (S) costs -> link to communication bounds
Runtime and Energy Models

• Currently simple linear expressions that include bandwidth \((W)\) and per transfer \((S)\) costs -> link to communication bounds

• Models are based on a set of hardware and algorithmic parameters:

\[
T = \gamma_t F + \beta_t W + \alpha_t S
\]

\[
E = p(\gamma_e F + \beta_e W + \alpha_e S + \delta_e MT + \epsilon_e T)
\]
Example: 2.5D Matrix-Matrix Multiplication (GEMM)

- 2.5D algorithm calculates GEMM by replicating input data to reduce communication.

\[
T_{2.5DMM}(n, p, M) = \frac{\gamma_t n^3}{p} + \frac{\beta_t n^3}{M^{1/2}p} + \frac{\alpha_t n^3}{mM^{1/2}p} \quad (9)
\]

\[
E_{2.5DMM}(n, p, M) = \left(\gamma_e + \gamma_t \epsilon_e \right) n^3 \\
+ \left(\beta_e + \beta_t \epsilon_e + \frac{\alpha_e + \alpha_t \epsilon_e}{m} \right) \frac{n^3}{M^{1/2}} \\
+ \delta_e \gamma_t M n^3 \\
+ \left(\delta_e \beta_t + \frac{\delta_e \alpha_t}{m} \right) M^{1/2} n^3. \quad (10)
\]
Energy Bounds

• Have energy bounds for GEMM, matrix-vector multiplication, Strassen’s matrix multiplication, FFT, n-body, LU

• What are energy-optimal machine parameters for a given problem?

• ASPIRE Open House on the 5th floor of Soda Hall!!!!