CREST

Open House 12:45 to 4pm, 406 Cory Hall

Patrick Scaglia and Costas Spanos
plus ~20 UCB PIs and ~30 International Collaborators

Mehdi Maasoumy
PhD Candidate
University of California, Berkeley

US Energy System and important sub-systems

Materials \Leftrightarrow Systems \Leftrightarrow Grid Integration $\Leftrightarrow D-R \Leftrightarrow$ Markets \Leftrightarrow Policy

Grid \Leftrightarrow Building \Leftrightarrow Occupant \Leftrightarrow Design \Leftrightarrow Materials \Leftrightarrow Life Cycle \Leftrightarrow Policy

Climatic and Demographic Change

People Living in the Tropics

Energy Systems must Change

- California Global Warming Solutions Act:
- Reduce greenhouse gas emissions to 1990 levels by 2020 (30\% below the 600 MMT forecast).
- A further 80\% cut below 1990 threshold by 2050.
- European Union Renewables Directive:
- Member states to produce a pre-agreed \% of energy consumption from renewable sources
- EU as a whole shall obtain at least 20% of total energy consumption from renewables by 2020.
- Singapore Energy Conservation Bill:
- Reduce its greenhouse gas (GHG) emissions by 16\% from the 2020 business-as-usual scenario.
- Reduce its energy intensity by 35\% from 2005 levels by 2030.

CREST Ecosystem

Example: SinBerBEST

Energy in Smart Tropical Buildings

$\frac{d T_{w_{i}}}{d t}=\frac{1}{C_{w_{i}}}\left[\sum_{j \in \mathcal{N}_{w_{i}}} \frac{T_{j}-T_{w_{i}}}{R_{i j}^{\prime}}+r_{i} \alpha_{i} A_{i} q_{r a d_{i}}^{\prime \prime}\right]$

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+d(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Data-Driven Predictive Model

Example: SinBerBEST

Ancillary service to Grid from Buildings

$$
\begin{array}{ll}
\min _{u_{\text {anc }}} & \sum_{i=1}^{n} \int\left(A C E^{i}(t)\right)^{2} d t \\
\text { s.t. } & x(k+1)=A x(k)+B_{2} u_{\text {anc }}(k)+E d(k) \\
& U_{\text {anc }}^{\min }(k) \leq u_{\text {anc }}(k) \leq U_{\text {anc }}^{\max }(k) \\
& \left|u_{\text {anc }}(k)-u_{\text {anc }}(k+1)\right| \leq L_{\text {anc }}^{\text {max }}(k)
\end{array}
$$

Where: $\quad A C E_{i}=\Delta P_{t i e}^{i}+\beta^{i} x_{1}^{i}$

$$
\begin{array}{lll}
\text { ACE(rms)=1.06 } & \text { 20X } & \text { ACE(rms) }=0.05 \\
\text { No Ancillary } & \text { reduction } & \text { With Ancillary }
\end{array}
$$

visit our brand new headquarters

Lunch 12:45-1:30pm
Poster Session 1:30-4pm

Overview \& Introductions 2-3:30pm
406 Cory Hall

