

Center for Research in Energy Systems Transformation

Open House 12:45 to 4pm, 406 Cory Hall

Patrick Scaglia and Costas Spanos plus ~20 UCB PIs and ~30 International Collaborators

Mehdi Maasoumy

PhD Candidate

University of California, Berkeley

US Energy System and important sub-systems Imports Solar 0.11 12.08 Electricity 26.10 Generation 38.19 Materials ↔ Systems ↔ Grid Integration \Leftrightarrow D-R \Leftrightarrow Wind 0.70 Residential 11.26

1.70

20.23

Commercial

849

Industrial

21.78

Transportation 26.98

0.10

3.19

1.40

0.43

Geotherma

0.37

Natural

Gas

23.37

Coal

19.76

Biomass 3.88

0.43

0.39

Markets \Leftrightarrow Policy

Grid ⇔ Building ⇔ Occupant 🗇 Design 🗇 Materials ⇔ Life Cycle ⇔ Policy

Courtesy LLNL

Climatic and Demographic Change

Energy Systems must Change

• California Global Warming Solutions Act:

- Reduce greenhouse gas emissions to 1990 levels by 2020 (30% below the 600 MMT forecast).
- A further 80% cut below 1990 threshold by 2050.
- European Union Renewables Directive:
 - Member states to produce a pre-agreed % of energy consumption from renewable sources
 - EU as a whole shall obtain at least 20% of total energy consumption from renewables by 2020.

• Singapore Energy Conservation Bill:

...

- Reduce its greenhouse gas (GHG) emissions by 16% from the 2020 business-as-usual scenario.
- Reduce its energy intensity by 35% from 2005 levels by 2030.

CREST Ecosystem

Example: SinBerBEST Energy in Smart Tropical Buildings

Time [hr]

Disturbance prediction error (5) [%]

Example: SinBerBEST Ancillary service to Grid from Buildings

$$\min_{u_{anc}} \sum_{i=1}^{n} \int (ACE^{i}(t))^{2} dt$$
s.t.
$$x(k+1) = Ax(k) + B_{2}u_{anc}(k) + Ed(k)$$

$$U_{anc}^{min}(k) \le u_{anc}(k) \le U_{anc}^{max}(k)$$

$$|u_{anc}(k) - u_{anc}(k+1)| \le L_{anc}^{max}(k)$$
Where:
$$ACE_{i} = \Delta P_{tie}^{i} + \beta^{i}x_{1}^{i}$$

$$MCE_{i} = \Delta P_{i}^{i} + \beta^{i}x_{1}^{i} +$$

visit our brand new headquarters

Lunch 12:45 - 1:30pm Poster Session 1:30 - 4pm Overview & Introductions 2 - 3:30pm 406 Cory Hall