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Heterogeneous Systems
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Different parts of a system and different levels
of hierarchy can have different Models of Computation
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Reasoning About Heterogeneity

® There needs to be a way to reason about the
composition of models with different Models
of Computation.

® This is necessary for establishing a
consistent semantics for heterogeneous
systems.

® This can be used to do analyses and forms
of verification that cross the boundaries of
heterogeneous compaosition.



Ptolemy Il

An open source research platform
for modeling systems.

Implements an Actor Oriented
language for model development.

Allows hierarchical design and the
heterogeneous composition of
different Models of Computation.

~2.5 Million Lines of Code.
Code generation.
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Actor Graphs
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Models

DDF Director
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<-- The Director determines the semantics of the Actor Graph
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Dataflow Directors :
DDF, PSDF, CSDF, MDSDF, HDF, SDF, etc...

Producing Tokens Consuming Tokens
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SDF : Production and Consumption rates are fixed.
Scheduability is decidable, and if a model is
scheduable, it can be scheduled periodically with
fixed-sized buffers.



Synchronous Directors :
SR, DE, CT, etc...

Determines Tokens Single value Depends on Tokens
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SR : If actors in @a model are monotonic then there
exists a unique solution for the value of every relation
that can be reached through a fixed-point iteration.



Composite Actors

DDF Director

<-- The Director determines the semantics of the Actor Graph
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Modular Actor Interface
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Deadline

Determines a deadline
for execution from
iInputs and state
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Directors Compose Actor Graphs into Actors

Actor Graph s -
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Director (‘Composite Actor )
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Directors compose the interfaces of Actors in
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a Model into those of the Composite Actor.



Mathematical Representations

The fixed-point semantics of SR can be understood In
clear mathematical terms.

Pl

(Fsx(¥)(0) = Fj(sj,(z,9) I1, )(0)
Letting ¥, be the unique least fixpoint of F, ;.
F(s,z) = yszlo
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From "A Modular Formal Semantics for Ptolemy", Tripakis et al.



Coroutine Model of Computation

Theorem 1. Given a non-strict Coroutine Model M, if the input Ipq and out-

put Qpq types of the model are finite-height pCPOs and operator & is mono-
tonic, then the above recursive equations characterizing the kernel functions e

and f have unique least fized-point solutions in the partial order of functions with
codomains 2¢ and Q,y, respectively.

Theorem 2. Given a non-strict Coroutine Model M, if the input Irq and output
O types of the model are finite-height pCPQOs and operator @ is monotonic,
and if for each g € Q) the functions enter; and fire, are monotonic in terms

of I,, and the mapping functions my and mg are monotonic, then the non-strict
kernels e and f are continuous in terms of Iaq.

"The Coroutine Model of Computation”, Shaver and Lee, 2012



| Conclude !

Try out Ptolemy! It's open and free!
Check out Modular Actor Interfaces.

~eel free to design your systems modularly,
nierarchically, and heterogeneously.

nttp://ptolemy.eecs.berkeley.edu
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