Catalog Description: Introduction to input/output concepts from control theory, systems as operators in signal spaces, passivity and small-gain theorems, dissipativity theory, integral quadratic constraints. Compositional stabilility and performance certification for interconnected systems from subsystems input/output properties. Case studies in multi-agent systems, biological networks, Internet congestion control, and adaptive control.

Units: 2

Course Objectives: Standard computational tools for control synthesis and verification do not scale well to large-scale, networked systems in emerging applications. This course presents a compositional methodology suitable when the subsystems are amenable to analytical and computational methods but the interconnection, taken as a whole, is beyond the reach of these methods. The main idea is to break up the task of certifying desired stability and performance properties into subproblems of manageable size using input/output properties. Students learn about the fundamental theory, as well as relevant algorithms and applications in several domains.

Formats:
Spring: 3.0 hours of lecture per week
Fall: 3.0 hours of lecture per week

Grading basis: letter

Final exam status: No final exam

Also listed as: MEC ENG C220D


Class homepage on inst.eecs