Matching Modulo Divisors, and a Simple N^1/4 Factoring Algorithm
Eric Bach
EECS Department, University of California, Berkeley
Technical Report No. UCB/CSD-84-187
, 1984
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-187.pdf
We present an algorithm for the following problem: given <i>x(1)</i>,...,<i>x(m)</i>, distinct modulo <i>N</i>, find two numbers in the list that are congruent modulo a proper divisor of <i>N</i>. The number of steps required is less than <i>m</i> times a polynomial in log<i>N</i>. This gives a simple proof that <i>N</i> can be factored in expected time <i>O</i>(<i>N</i>^(1/4+<i>e</i>)) for any <i>e</i>>0.
BibTeX citation:
@techreport{Bach:CSD-84-187, Author= {Bach, Eric}, Title= {Matching Modulo Divisors, and a Simple N^1/4 Factoring Algorithm}, Year= {1984}, Month= {Jun}, Url= {http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5972.html}, Number= {UCB/CSD-84-187}, Abstract= {We present an algorithm for the following problem: given <i>x(1)</i>,...,<i>x(m)</i>, distinct modulo <i>N</i>, find two numbers in the list that are congruent modulo a proper divisor of <i>N</i>. The number of steps required is less than <i>m</i> times a polynomial in log<i>N</i>. This gives a simple proof that <i>N</i> can be factored in expected time <i>O</i>(<i>N</i>^(1/4+<i>e</i>)) for any <i>e</i>>0.}, }
EndNote citation:
%0 Report %A Bach, Eric %T Matching Modulo Divisors, and a Simple N^1/4 Factoring Algorithm %I EECS Department, University of California, Berkeley %D 1984 %@ UCB/CSD-84-187 %U http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5972.html %F Bach:CSD-84-187