Robust Strategy Synthesis for Probabilistic Systems Applied to Risk-Limiting Renewable-Energy Pricing
Alberto Alessandro Angelo Puggelli and Alberto L. Sangiovanni-Vincentelli and Sanjit A. Seshia
EECS Department, University of California, Berkeley
Technical Report No. UCB/EECS-2014-16
February 10, 2014
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-16.pdf
The use of economic incentives has been proposed to manage user demand in smart grids that integrate renewable sources of energy to compensate for the intrinsic uncertainty in the prediction of the supply generation. We address the problem of synthesizing optimal energy pricing strategies, while quantitatively constraining the risk due to uncertainty for the network operator and guaranteeing quality-of-service for the users. We use Ellipsoidal Markov Decision Processes (EMDP) to model the decision-making scenario. These models are trained with measured data and allow to quantitatively capture the uncertainty in the prediction of energy generation. We then cast the constrained optimization problem as the strategy synthesis problem for EMDPs, with the goal to maximize the total expected reward constrained to properties expressed using the Probabilistic Computation Tree Logic (PCTL), and propose a novel sound and complete synthesis algorithm. An experimental comparison shows the effectiveness of our method with respect to previous approaches presented in the literature.
BibTeX citation:
@techreport{Puggelli:EECS-2014-16, Author= {Puggelli, Alberto Alessandro Angelo and Sangiovanni-Vincentelli, Alberto L. and Seshia, Sanjit A.}, Title= {Robust Strategy Synthesis for Probabilistic Systems Applied to Risk-Limiting Renewable-Energy Pricing}, Year= {2014}, Month= {Feb}, Url= {http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-16.html}, Number= {UCB/EECS-2014-16}, Abstract= {The use of economic incentives has been proposed to manage user demand in smart grids that integrate renewable sources of energy to compensate for the intrinsic uncertainty in the prediction of the supply generation. We address the problem of synthesizing optimal energy pricing strategies, while quantitatively constraining the risk due to uncertainty for the network operator and guaranteeing quality-of-service for the users. We use Ellipsoidal Markov Decision Processes (EMDP) to model the decision-making scenario. These models are trained with measured data and allow to quantitatively capture the uncertainty in the prediction of energy generation. We then cast the constrained optimization problem as the strategy synthesis problem for EMDPs, with the goal to maximize the total expected reward constrained to properties expressed using the Probabilistic Computation Tree Logic (PCTL), and propose a novel sound and complete synthesis algorithm. An experimental comparison shows the effectiveness of our method with respect to previous approaches presented in the literature.}, }
EndNote citation:
%0 Report %A Puggelli, Alberto Alessandro Angelo %A Sangiovanni-Vincentelli, Alberto L. %A Seshia, Sanjit A. %T Robust Strategy Synthesis for Probabilistic Systems Applied to Risk-Limiting Renewable-Energy Pricing %I EECS Department, University of California, Berkeley %D 2014 %8 February 10 %@ UCB/EECS-2014-16 %U http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-16.html %F Puggelli:EECS-2014-16