A Micromechanical Frequency-Selective Power Amplifier
Clark Nguyen and Wei-chang Li
EECS Department, University of California, Berkeley
Technical Report No. UCB/EECS-2017-171
December 1, 2017
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-171.pdf
This dissertation describes a MEMS-based frequency-selective power amplifier that performs both signal filtering and power amplification, while consuming zero power when there is no input, i.e., zero-quiescent power consumption. The frequency-selective power amplifier employs a micromechanical resonant switch (resoswitch) as a key building block similar to those recently used for zero-quiescent power radio receivers, but capable of handling higher powers. This document details the design, fabrication, and characterization of these higher frequency and higher power micromechanical resoswitches, and employs them as power amplifiers. Here, the mechanical Q of the resoswitch largely governs the threshold input level that instigates power gain. Theoretical and experimental studies of Q, as well as Q enhancement techniques and high-Q structural design, are discussed. Further, post-fabrication laser trimming addresses the frequency accuracy of the vibrating devices. A model that replaces laser blasted holes with stiffness-modifying cracks captures well the frequency shift dependence on laser blast location. The accuracy of this theory further enables a deterministic trimming protocol that specifies the laser targeting sequence needed to achieve a required amount of frequency tuning with minimal Q reduction.
Advisors: Clark Nguyen
BibTeX citation:
@phdthesis{Nguyen:EECS-2017-171, Author= {Nguyen, Clark and Li, Wei-chang}, Title= {A Micromechanical Frequency-Selective Power Amplifier}, School= {EECS Department, University of California, Berkeley}, Year= {2017}, Month= {Dec}, Url= {http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-171.html}, Number= {UCB/EECS-2017-171}, Abstract= {This dissertation describes a MEMS-based frequency-selective power amplifier that performs both signal filtering and power amplification, while consuming zero power when there is no input, i.e., zero-quiescent power consumption. The frequency-selective power amplifier employs a micromechanical resonant switch (resoswitch) as a key building block similar to those recently used for zero-quiescent power radio receivers, but capable of handling higher powers. This document details the design, fabrication, and characterization of these higher frequency and higher power micromechanical resoswitches, and employs them as power amplifiers. Here, the mechanical Q of the resoswitch largely governs the threshold input level that instigates power gain. Theoretical and experimental studies of Q, as well as Q enhancement techniques and high-Q structural design, are discussed. Further, post-fabrication laser trimming addresses the frequency accuracy of the vibrating devices. A model that replaces laser blasted holes with stiffness-modifying cracks captures well the frequency shift dependence on laser blast location. The accuracy of this theory further enables a deterministic trimming protocol that specifies the laser targeting sequence needed to achieve a required amount of frequency tuning with minimal Q reduction.}, }
EndNote citation:
%0 Thesis %A Nguyen, Clark %A Li, Wei-chang %T A Micromechanical Frequency-Selective Power Amplifier %I EECS Department, University of California, Berkeley %D 2017 %8 December 1 %@ UCB/EECS-2017-171 %U http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-171.html %F Nguyen:EECS-2017-171