Optimal Parallel Construction of Prescribed Tournaments
Danny Soroker
EECS Department, University of California, Berkeley
Technical Report No. UCB/CSD-87-371
, 1987
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-371.pdf
A tournament is a digraph in which every pair of vertices is connected by exactly one arc. The score list of a tournament is the sorted list of the out-degrees of its vertices. Given a non-decreasing sequence of non-negative integers, is it the score list of some tournament? There is a simple test for answering this question. There is also a simple sequential algorithm for constructing a tournament with a given score list. However, this algorithm has a greedy nature, and seems hard to parallelize. We present a simple parallel algorithm for the construction problems. Our algorithm runs in time <i>O</i>(log<i>n</i>) and uses <i>O</i>(<i>n</i>^2/log</i>n</i>) processors on a CREW PRAM, where <i>n</i> is the number of vertices. Since the size of the output is Omega(<i>n</i>^2), our algorithm achieves optimal speedup.
BibTeX citation:
@techreport{Soroker:CSD-87-371, Author= {Soroker, Danny}, Title= {Optimal Parallel Construction of Prescribed Tournaments}, Year= {1987}, Month= {Sep}, Url= {http://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/6225.html}, Number= {UCB/CSD-87-371}, Abstract= {A tournament is a digraph in which every pair of vertices is connected by exactly one arc. The score list of a tournament is the sorted list of the out-degrees of its vertices. Given a non-decreasing sequence of non-negative integers, is it the score list of some tournament? There is a simple test for answering this question. There is also a simple sequential algorithm for constructing a tournament with a given score list. However, this algorithm has a greedy nature, and seems hard to parallelize. We present a simple parallel algorithm for the construction problems. Our algorithm runs in time <i>O</i>(log<i>n</i>) and uses <i>O</i>(<i>n</i>^2/log</i>n</i>) processors on a CREW PRAM, where <i>n</i> is the number of vertices. Since the size of the output is Omega(<i>n</i>^2), our algorithm achieves optimal speedup.}, }
EndNote citation:
%0 Report %A Soroker, Danny %T Optimal Parallel Construction of Prescribed Tournaments %I EECS Department, University of California, Berkeley %D 1987 %@ UCB/CSD-87-371 %U http://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/6225.html %F Soroker:CSD-87-371