Enhancing Accelerator Design Space Exploration with Differentiable Modeling and Unified Hardware-Software Co-Exploration
Charles Hong
EECS Department, University of California, Berkeley
Technical Report No. UCB/EECS-2024-237
December 20, 2024
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-237.pdf
In the hardware design space exploration process, it is critical to optimize both hardware parameters and algorithm-to-hardware mappings. Previous work has largely approached this simultaneous optimization problem by separately exploring the hardware design space and the mapspace---both individually large and highly nonconvex spaces---independently. The resulting combinatorial explosion has created significant difficulties for optimizers.
In this work, we introduce DOSA, which consists of differentiable performance models and a gradient descent-based optimization technique to simultaneously explore both spaces and identify high-performing design points. Experimental results demonstrate that DOSA outperforms random search and Bayesian optimization by 2.80x and 12.59x, respectively, in improving DNN model energy-delay product, given a similar number of samples. We also demonstrate the modularity and flexibility of DOSA by augmenting our analytical model with a learned model, allowing us to optimize buffer sizes and mappings of a real DNN accelerator and attain a 1.82x improvement in energy-delay product.
Advisors: Sophia Shao
BibTeX citation:
@mastersthesis{Hong:EECS-2024-237, Author= {Hong, Charles}, Title= {Enhancing Accelerator Design Space Exploration with Differentiable Modeling and Unified Hardware-Software Co-Exploration}, School= {EECS Department, University of California, Berkeley}, Year= {2024}, Month= {Dec}, Url= {http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-237.html}, Number= {UCB/EECS-2024-237}, Abstract= {In the hardware design space exploration process, it is critical to optimize both hardware parameters and algorithm-to-hardware mappings. Previous work has largely approached this simultaneous optimization problem by separately exploring the hardware design space and the mapspace---both individually large and highly nonconvex spaces---independently. The resulting combinatorial explosion has created significant difficulties for optimizers. In this work, we introduce DOSA, which consists of differentiable performance models and a gradient descent-based optimization technique to simultaneously explore both spaces and identify high-performing design points. Experimental results demonstrate that DOSA outperforms random search and Bayesian optimization by 2.80x and 12.59x, respectively, in improving DNN model energy-delay product, given a similar number of samples. We also demonstrate the modularity and flexibility of DOSA by augmenting our analytical model with a learned model, allowing us to optimize buffer sizes and mappings of a real DNN accelerator and attain a 1.82x improvement in energy-delay product.}, }
EndNote citation:
%0 Thesis %A Hong, Charles %T Enhancing Accelerator Design Space Exploration with Differentiable Modeling and Unified Hardware-Software Co-Exploration %I EECS Department, University of California, Berkeley %D 2024 %8 December 20 %@ UCB/EECS-2024-237 %U http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-237.html %F Hong:EECS-2024-237